[4] Boussinesq, J.: Essay on the theory of flowing water. Mém. prés. p. div. sav. de Paris 23 (1877), 666-680 French.
[5] Boussinesq, J.: Théorie de l'intumescence liquide appelée onde solitaire ou de translation, se propageant dans un canal rectangulaire. C. R. 72 (1871), 755-759 French.
[6] Boussinesq, J.: Theory of wave and vorticity propagation in a liquid through a long rectangular horizontal channel. Liouville J. 17 (1872), 55-109.
[7] Craig, W.:
An existence theory for water waves and the Boussinesq and Korteweg-de Vries scaling limits. Commun. Partial Differ. Equations 10 (1985), 787-1003.
DOI 10.1080/03605308508820396 |
MR 0795808
[14] Liu, Y., Xu, R., Yu, T.:
Global existence, nonexistence and asymptotic behavior of solutions for the Cauchy problem of semilinear heat equations. Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 68 (2008), 3332-3348.
DOI 10.1016/j.na.2007.03.029 |
MR 2401347 |
Zbl 1149.35367
[15] Liu, Y., Zhao, J.:
On potential wells and applications to semilinear hyperbolic equations and parabolic equations. Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 64 (2006), 2665-2687.
DOI 10.1016/j.na.2005.09.011 |
MR 2218541 |
Zbl 1096.35089
[17] Ohta, M.:
Remarks on blowup of solutions for nonlinear evolution equations of second order. Adv. Math. Sci. Appl. 8 (1998), 901-910.
MR 1657188 |
Zbl 0920.35025
[18] Pazy, A.:
Semigroups of Linear Operators and Applications to Partial Differential Equations. Applied Mathematical Sciences 44 Springer, New York (1983).
MR 0710486 |
Zbl 0516.47023
[19] Sell, G. R., You, Y.: Semiflows and global attractors. Proc. ICTP Workshop on Infinite Dimensional Dynamical Systems, Trieste, Italy (1993), 1-13.
[21] Varlamov, V.:
On the Cauchy problem for the damped Boussinesq equation. Differ. Integral Equ. 9 (1996), 619-634.
MR 1371712 |
Zbl 0844.35095
[24] You, Y.: Inertial manifolds and applications of nonlinear evolution equations. Proc. ICTP Workshop on Infinite Dimensional Dynamical Systems, Trieste, Italy (1993), 21-34.