Previous |  Up |  Next

Article

Keywords:
complete convergence in mean; double array of random variables with values in Banach space; martingale difference double array; strong law of large numbers; $p$-uniformly smooth space
Summary:
The rate of moment convergence of sample sums was investigated by Chow (1988) (in case of real-valued random variables). In 2006, Rosalsky et al. introduced and investigated this concept for case random variable with Banach-valued (called complete convergence in mean of order $p$). In this paper, we give some new results of complete convergence in mean of order $p$ and its applications to strong laws of large numbers for double arrays of random variables taking values in Banach spaces.
References:
[1] Adler, A., Rosalsky, A.: Some general strong laws for weighted sums of stochastically dominated random variables. Stochastic Anal. Appl. 5 (1987), 1-16. DOI 10.1080/07362998708809104 | MR 0882694 | Zbl 0617.60028
[2] Chow, Y. S.: On the rate of moment convergence of sample sums and extremes. Bull. Inst. Math., Acad. Sin. 16 (1988), 177-201. MR 1089491 | Zbl 0655.60028
[3] Dung, L. V., Ngamkham, T., Tien, N. D., Volodin, A. I.: Marcinkiewicz-Zygmund type law of large numbers for double arrays of random elements in Banach spaces. Lobachevskii J. Math. 30 (2009), 337-346. DOI 10.1134/S1995080209040118 | MR 2587856 | Zbl 1227.60008
[4] Hoffmann-Jørgensen, J., Pisier, G.: The law of large numbers and the central limit theorem in Banach spaces. Ann. Probab. 4 (1976), 587-599. DOI 10.1214/aop/1176996029 | MR 0423451 | Zbl 0368.60022
[5] Pisier, G.: Martingales with values in uniformly convex spaces. Isr. J. Math. 20 (1975), 326-350. DOI 10.1007/BF02760337 | MR 0394135 | Zbl 0344.46030
[6] Rosalsky, A., Thanh, L. V., Volodin, A. I.: On complete convergence in mean of normed sums of independent random elements in Banach spaces. Stochastic Anal. Appl. 24 (2006), 23-35. DOI 10.1080/07362990500397319 | MR 2198535 | Zbl 1087.60009
[7] Scalora, F. S.: Abstract martingale convergence theorems. Pac. J. Math. 11 (1961), 347-374. DOI 10.2140/pjm.1961.11.347 | MR 0123356 | Zbl 0114.07702
Partner of
EuDML logo