Article
Keywords:
class group; class field tower; multiquadratic number field
Summary:
It is well known by results of Golod and Shafarevich that the Hilbert $2$-class field tower of any real quadratic number field, in which the discriminant is not a sum of two squares and divisible by eight primes, is infinite. The aim of this article is to extend this result to any real abelian $2$-extension over the field of rational numbers. So using genus theory, units of biquadratic number fields and norm residue symbol, we prove that for every real abelian $2$-extension over $\mathbb Q$ in which eight primes ramify and one of theses primes $\equiv -1\pmod 4$, the Hilbert $2$-class field tower is infinite.
References:
[2] Golod, E. S., Shafarevich, I. R.:
On the class field tower. Izv. Akad. Nauk SSSR, Ser. Mat. 28 (1964), 261-272 Russian; English translation in Transl., Ser. 2, Am. Math. Soc. 48 (1965), 91-102.
MR 0161852
[3] Hasse, H.: Neue Begründung und Verallgemeinerung der Theorie des Normenrestsymbols. J. f. M. 162 (1930), 134-144 German.
[4] Ishida, M.:
The Genus Fields of Algebraic Number Fields. Lecture Notes in Mathematics 555. Springer Berlin (1976).
MR 0435028
[5] Jehne, W.:
On knots in algebraic number theory. J. Reine Angew. Math. 311-312 (1979), 215-254.
MR 0549967 |
Zbl 0432.12006
[6] Kuroda, S.:
Über den Dirichletschen Körper. J. Fac. Sci. Univ. Tokyo, Sect. I 4 (1943), 383-406 German.
MR 0021031 |
Zbl 0061.05901
[7] Kuz'min, L. V.:
Homologies of profinite groups, the Schur multiplicator and class field theory. Izv. Akad. Nauk. SSSR Ser. Mat. 33 (1969), 1220-1254 Russian.
MR 0255511
[8] Maire, C.:
A refinement of the Golod-Shafarevich theorem. (Un raffinement du théoreme de Golod-Šafarevič). Nagoya Math. J. 150 (1998), 1-11 French.
MR 1633138
[9] Mouhib, A.:
On the Hilbert $2$-class field tower of real quadratic fields. (Sur la tour des $2$-corps de classes de Hilbert des corps quadratiques réels). Ann. Sci. Math. Qu. 28 (2004), 179-187 French.
MR 2183105