Previous |  Up |  Next

Article

Keywords:
reflexive algebra; reflexive lattice; subspace lattice; bilattice
Summary:
We study reflexivity of bilattices. Some examples of reflexive and non-reflexive bilattices are given. With a given subspace lattice $\mathcal {L}$ we may associate a bilattice $\Sigma _{\mathcal {L}}$. Similarly, having a bilattice $\Sigma $ we may construct a subspace lattice $\mathcal {L}_{\Sigma }$. Connections between reflexivity of subspace lattices and associated bilattices are investigated. It is also shown that the direct sum of any two bilattices is never reflexive.
References:
[1] Davidson, K. R., Harrison, K. J.: Distance formulae for subspace lattices. J. Lond. Math. Soc., II. Ser. 39 (1989), 309-323. DOI 10.1112/jlms/s2-39.2.309 | MR 0991664 | Zbl 0723.47003
[2] Hadwin, D.: General view of reflexivity. Trans. Am. Math. Soc. 344 (1994), 325-360. DOI 10.1090/S0002-9947-1994-1239639-4 | MR 1239639 | Zbl 0802.46010
[3] Halmos, P. R.: Two subspaces. Trans. Am. Math. Soc. 144 (1969), 381-389. DOI 10.1090/S0002-9947-1969-0251519-5 | MR 0251519 | Zbl 0187.05503
[4] Loginov, A. I., Shulman, V. S.: Hereditary and intermediate reflexivity of $W^*$-algebras. Izv. Akad. Nauk SSSR, Ser. Mat. 39 (1975), 1260-1273 Russian. MR 0405124
[5] Sarason, D.: Invariant subspaces and unstarred operator algebras. Pac. J. Math. 17 (1966), 511-517. DOI 10.2140/pjm.1966.17.511 | MR 0192365 | Zbl 0171.33703
[6] Shulman, V. S.: Nest algebras by K. R. Davidson: a review. Algebra Anal. 2 (1990), 236-255.
[7] Shulman, V. S., Turowska, L.: Operator synthesis. I. Synthetic sets, bilattices and tensor algebras. J. Funct. Anal. 209 (2004), 293-331. DOI 10.1016/S0022-1236(03)00270-2 | MR 2044225 | Zbl 1071.47066
Partner of
EuDML logo