Previous |  Up |  Next

Article

Keywords:
Wakamatsu tilting module; $\omega $-$k$-torsionfree module; $\mathcal {X}$-resolution dimension; injective dimension; $\omega $-torsionless property
Summary:
Let $R$ be a left Noetherian ring, $S$ a right Noetherian ring and $_R\omega $ a Wakamatsu tilting module with $S={\rm End}(_R\omega )$. We introduce the notion of the $\omega $-torsionfree dimension of finitely generated $R$-modules and give some criteria for computing it. For any $n\geq 0$, we prove that ${\rm l.id}_R(\omega ) = {\rm r.id}_S(\omega )\leq n$ if and only if every finitely generated left $R$-module and every finitely generated right $S$-module have $\omega $-torsionfree dimension at most $n$, if and only if every finitely generated left $R$-module (or right $S$-module) has generalized Gorenstein dimension at most $n$. Then some examples and applications are given.
References:
[1] Auslander, M., Bridger, M.: Stable Module Theory. Memoirs of the American Mathematical Society 94 AMS, Providence (1969). DOI 10.1090/memo/0094 | MR 0269685 | Zbl 0204.36402
[2] Auslander, M., Buchweitz, R.-O.: The homological theory of maximal Cohen-Macaulay approximations. Mém. Soc. Math. Fr., Nouv. Sér. 38 (1989), 5-37. MR 1044344 | Zbl 0697.13005
[3] Auslander, M., Reiten, I.: Cohen-Macaulay and Gorenstein Artin algebras. Representation Theory of Finite Groups and Finite-Dimensional Algebras G. O. Michler et al. Proc. Conf., Bielefeld/Ger. 1991, Prog. Math. 95 Birkhäuser, Basel (1991), 221-245. MR 1112162 | Zbl 0776.16003
[4] Beligiannis, A., Reiten, I.: Homological and Homotopical Aspects of Torsion Theories. Memoirs of the American Mathematical Society 883 AMS, Providence (2007). MR 2327478 | Zbl 1124.18005
[5] Bennis, D., Mahdou, N.: Global Gorenstein dimensions. Proc. Am. Math. Soc. 138 (2010), 461-465. DOI 10.1090/S0002-9939-09-10099-0 | MR 2557164 | Zbl 1205.16007
[6] Göbel, R., Trlifaj, J.: Approximations and Endomorphism Algebras of Modules. De Gruyter Expositions in Mathematics 41 Walter de Gruyter, Berlin (2006). MR 2251271 | Zbl 1121.16002
[7] Hoshino, M.: Algebras of finite self-injective dimension. Proc. Am. Math. Soc. 112 (1991), 619-622. DOI 10.1090/S0002-9939-1991-1047011-8 | MR 1047011 | Zbl 0737.16003
[8] Huang, Z.: $\omega$-$k$-torsionfree modules and $\omega$-left approximation dimension. Sci. China, Ser. A 44 (2001), 184-192. DOI 10.1007/BF02874420 | MR 1824318 | Zbl 1054.16002
[9] Huang, Z.: Generalized tilting modules with finite injective dimension. J. Algebra 311 (2007), 619-634. DOI 10.1016/j.jalgebra.2006.11.025 | MR 2314727 | Zbl 1130.16008
[10] Huang, Z.: Selforthogonal modules with finite injective dimension III. Algebr. Represent. Theory 12 (2009), 371-384. DOI 10.1007/s10468-009-9157-2 | MR 2501192 | Zbl 1171.16006
[11] Huang, Z.: Wakamatsu tilting modules, $U$-dominant dimension, and $k$-Gorenstein modules. Abelian Groups, Rings, Modules, and Homological Algebra Lecture Notes in Pure and Applied Mathematics 249. Selected papers of a conference on the occasion of Edgar Earle Enochs' 72nd birthday, Auburn, AL, USA, September 9-11, 2004 P. Goeters et al. Chapman & Hall/CRC (2006), 183-202. MR 2229112 | Zbl 1102.16006
[12] Huang, Z., Tang, G.: Self-orthogonal modules over coherent rings. J. Pure Appl. Algebra 161 (2001), 167-176. DOI 10.1016/S0022-4049(00)00109-2 | MR 1834083 | Zbl 0989.16005
[13] Mantese, F., Reiten, I.: Wakamatsu tilting modules. J. Algebra 278 (2004), 532-552. DOI 10.1016/j.jalgebra.2004.03.023 | MR 2071651 | Zbl 1075.16006
[14] Rotman, J. J.: An Introduction to Homological Algebra. Pure and Applied Mathematics 85 Academic Press, New York (1979). MR 0538169 | Zbl 0441.18018
[15] Wakamatsu, T.: Tilting modules and Auslander's Gorenstein property. J. Algebra 275 (2004), 3-39. DOI 10.1016/j.jalgebra.2003.12.008 | MR 2047438 | Zbl 1076.16006
Partner of
EuDML logo