Previous |  Up |  Next

Article

Keywords:
higher order Diophantine equations; method of infinite ascent; Diophantine equation $-(2^p\cdot A^6) + B^3 = C^2$
Summary:
In this paper, the author shows a technique of generating an infinite number of coprime integral solutions for $(A,B,C)$ of the Diophantine equation $-(2^p\cdot A^6) + B^3 = C^2$ for any positive integral values of $p$ when $p \equiv 1$ (mod 6) or $p \equiv 2$ (mod 6). For doing this, we will be using a published result of this author in The Mathematics Student, a periodical of the Indian Mathematical Society.
References:
[1] Arif, S.A., Abu Muriefah, F.S.: The Diophantine equation $x^2 + 3^m = y^n$. Int. J. Math. Math. Sci., 21, 3, 1998, 619-620. MR 1620327 | Zbl 0905.11017
[2] Arif, S.A., Abu Muriefah, F.S.: On the Diophantine equation $x^2 +2^k =y^n$ II. Arab J. Math. Sci., 7, 2, 2001, 67-71. MR 1940290 | Zbl 1010.11021
[3] Abu Muriefah, F.S., Luca, F., Togbé, A.: On the Diophantine equation $x^2 +5^a 13^b = y^n$. Glasg. Math. J., 50, 1, 2008, 175-181. MR 2381741 | Zbl 1186.11016
[4] Bérczes, A., Pink, I.: On the Diophantine equation $x^2+p^{2k}=y^n$. Archiv der Mathematik, 91, 6, 2008, 505-517. DOI 10.1007/s00013-008-2847-x | MR 2465869 | Zbl 1175.11018
[5] Bérczes, A., Pink, I.: On the Diophantine equation $x^2 +d^{2l+1} =y^n$. Glasg. Math. J., 54, 2, 2012, 415-428. MR 2911379 | Zbl 1266.11059
[6] Bugeaud, Y., Muriefah, F.S. Abu: The Diophantine equation $x^2 + c = y^n$: a brief overview. Rev. Colomb. Mat., 40, 1, 2006, 31-37. MR 2286850
[7] Bugeaud, Y., Mignotte, M., Siksek, S.: Classical and modular approaches to Exponential Diophantine equations II: The Lebesgue-Nagell equation. Compositio Mathematica, 142, 2006, 31-62. DOI 10.1112/S0010437X05001739 | MR 2196761 | Zbl 1128.11013
[8] Chao, K.: On the Diophantine equation $x^2 = y^n + 1, xy\not =0$. Sci. Sinica, 14, 1965, 457-460. MR 0183684
[9] Cohn, J.H.E.: The diophantine equation $x^2 +2^k =y^n$. Arch. Math. (Basel), 59, 4, 1992, 341-344. DOI 10.1007/BF01197049 | MR 1179459
[10] Cohn, J.H.E.: The Diophantine equation $x^2 + C = y^n$. Acta Arith., 65, 4, 1993, 367-381. MR 1259344
[11] Goins, E., Luca, F., Togbé, A.: On the Diophantine equation $x^2 +2^\alpha 5^\beta 13^\gamma = y^n$. ANTS VIII Proceedings: A. J. van der Poorten and A. Stein (eds.), ANTS VIII, Lecture Notes in Computer Science 5011, 2008, 430-442. MR 2467863 | Zbl 1232.11130
[12] Jena, S.K.: Method of Infinite Ascent applied on $mA^6 + nB^3 = C^2$. Math. Student, 77, 2008, 239-246. MR 2642292 | Zbl 1217.11035
[13] Le, M.: Diophantine equation $x^2 + 2^m = y^n$. Chinese Sci. Bull., 42, 18, 1997, 1515-1517. DOI 10.1007/BF02882920 | MR 1641030 | Zbl 1044.11566
[14] Lebesgue, V.A.: Sur l'impossibilité en nombres entiers de l'équation $x^m = y^2 + 1$. Nouv. Ann. Math., 99, 1850, 178-181, (French).
[15] Ljunggren, W.: Über einige Arcustangensgleichungen die auf interessante unbestimmte Gleichungen führen. Ark. Mat., 29A, 13, 1943, 1-11, (German). MR 0012090 | Zbl 0028.10904
[16] Luca, F.: On the equation $ x^2 + 2^a\cdot 3^b = y^n$. Int. J. Math. Math. Sci., 29, 4, 2002, 239-244. Zbl 1085.11021
[17] Luca, F., Togbé, A.: On the Diophantine equation $x^2 +2^a 5^b = y^n$. Int. J. Number Theory, 4, 6, 2008, 973-979. DOI 10.1142/S1793042108001791 | MR 2483306
[18] Mignotte, M., de Weger, B.M.M.: On the Diophantine equations $x^2 + 74 = y^5$ and $x^2 + 86 = y^5$. Glasgow Math. J., 38, 1, 1996, 77-85. MR 1373962
[19] Nagell, T.: Sur l'impossibilité de quelques équations à deux indéterminées. Norsk. Mat. Forensings Sknifter, 13, 1923, 65-82, (French).
[20] Nagell, T.: Contributions to the theory of Diophantine equations of the second degree with two unknowns. Nova Acta Soc. Sci. Upsal. Ser (4), 16, 2, 1955, 38-38. MR 0070645
[21] Pink, I., Rábai, Zs.: On the Diophantine equation $x^2 + 5^k 17^l = y^n$. Commun. Math., 19, 1, 2011, 1-9. MR 2855388
[22] Saradha, N., Srinivasan, A.: Solutions of some generalized Ramanujan-Nagell equations. Indag. Math. (N.S.), 17, 1, 2006, 103-114. DOI 10.1016/S0019-3577(06)80009-1 | MR 2337167 | Zbl 1110.11012
[23] Saradha, N., Srinivasan, A.: Solutions of some generalized Ramanujan-Nagell equations via binary quadratic forms. Publ. Math. Debrecen, 71, 3-4, 2007, 349-374. MR 2361718 | Zbl 1164.11020
[24] Zhu, H., Le, M.: On some generalized Lebesgue-Nagell equations. J. Number Theory, 131, 3, 2011, 458-469. DOI 10.1016/j.jnt.2010.09.009 | MR 2739046 | Zbl 1219.11059
Partner of
EuDML logo