[1] Arif, S.A., Abu Muriefah, F.S.:
The Diophantine equation $x^2 + 3^m = y^n$. Int. J. Math. Math. Sci., 21, 3, 1998, 619-620.
MR 1620327 |
Zbl 0905.11017
[2] Arif, S.A., Abu Muriefah, F.S.:
On the Diophantine equation $x^2 +2^k =y^n$ II. Arab J. Math. Sci., 7, 2, 2001, 67-71.
MR 1940290 |
Zbl 1010.11021
[3] Abu Muriefah, F.S., Luca, F., Togbé, A.:
On the Diophantine equation $x^2 +5^a 13^b = y^n$. Glasg. Math. J., 50, 1, 2008, 175-181.
MR 2381741 |
Zbl 1186.11016
[5] Bérczes, A., Pink, I.:
On the Diophantine equation $x^2 +d^{2l+1} =y^n$. Glasg. Math. J., 54, 2, 2012, 415-428.
MR 2911379 |
Zbl 1266.11059
[6] Bugeaud, Y., Muriefah, F.S. Abu:
The Diophantine equation $x^2 + c = y^n$: a brief overview. Rev. Colomb. Mat., 40, 1, 2006, 31-37.
MR 2286850
[8] Chao, K.:
On the Diophantine equation $x^2 = y^n + 1, xy\not =0$. Sci. Sinica, 14, 1965, 457-460.
MR 0183684
[10] Cohn, J.H.E.:
The Diophantine equation $x^2 + C = y^n$. Acta Arith., 65, 4, 1993, 367-381.
MR 1259344
[11] Goins, E., Luca, F., Togbé, A.:
On the Diophantine equation $x^2 +2^\alpha 5^\beta 13^\gamma = y^n$. ANTS VIII Proceedings: A. J. van der Poorten and A. Stein (eds.), ANTS VIII, Lecture Notes in Computer Science 5011, 2008, 430-442.
MR 2467863 |
Zbl 1232.11130
[12] Jena, S.K.:
Method of Infinite Ascent applied on $mA^6 + nB^3 = C^2$. Math. Student, 77, 2008, 239-246.
MR 2642292 |
Zbl 1217.11035
[14] Lebesgue, V.A.: Sur l'impossibilité en nombres entiers de l'équation $x^m = y^2 + 1$. Nouv. Ann. Math., 99, 1850, 178-181, (French).
[15] Ljunggren, W.:
Über einige Arcustangensgleichungen die auf interessante unbestimmte Gleichungen führen. Ark. Mat., 29A, 13, 1943, 1-11, (German).
MR 0012090 |
Zbl 0028.10904
[16] Luca, F.:
On the equation $ x^2 + 2^a\cdot 3^b = y^n$. Int. J. Math. Math. Sci., 29, 4, 2002, 239-244.
Zbl 1085.11021
[18] Mignotte, M., de Weger, B.M.M.:
On the Diophantine equations $x^2 + 74 = y^5$ and $x^2 + 86 = y^5$. Glasgow Math. J., 38, 1, 1996, 77-85.
MR 1373962
[19] Nagell, T.: Sur l'impossibilité de quelques équations à deux indéterminées. Norsk. Mat. Forensings Sknifter, 13, 1923, 65-82, (French).
[20] Nagell, T.:
Contributions to the theory of Diophantine equations of the second degree with two unknowns. Nova Acta Soc. Sci. Upsal. Ser (4), 16, 2, 1955, 38-38.
MR 0070645
[21] Pink, I., Rábai, Zs.:
On the Diophantine equation $x^2 + 5^k 17^l = y^n$. Commun. Math., 19, 1, 2011, 1-9.
MR 2855388
[23] Saradha, N., Srinivasan, A.:
Solutions of some generalized Ramanujan-Nagell equations via binary quadratic forms. Publ. Math. Debrecen, 71, 3-4, 2007, 349-374.
MR 2361718 |
Zbl 1164.11020