Previous |  Up |  Next

Article

Keywords:
fuzzy connective; uninorm; left (right) semi-uninorm; upper (lower) approximation
Summary:
Uninorms are important generalizations of triangular norms and conorms, with a neutral element lying anywhere in the unit interval, and left (right) semi-uninorms are non-commutative and non-associative extensions of uninorms. In this paper, we firstly introduce the concepts of left and right semi-uninorms on a complete lattice and illustrate these notions by means of some examples. Then, we lay bare the formulas for calculating the upper and lower approximation left (right) semi-uninorms of a binary operation. Finally, we discuss the relations between the upper approximation left (right) semi-uninorms of a given binary operation and the lower approximation left (right) semi-uninorms of its dual operation.
References:
[1] Baets, B. De: Coimplicators, the forgotten connectives. Tatra Mountains Math. Publ. 12 (1997), 229-240. MR 1607142 | Zbl 0954.03029
[2] Baets, B. De: Idempotent uninorms. European J. Oper. Res. 118 (1999), 631-642. DOI 10.1016/S0377-2217(98)00325-7 | Zbl 1178.03070
[3] Baets, B. De, Fodor, J.: Van Melle's combining function in MYCIN is a representable uninorm: an alternative proof. Fuzzy Sets and Systems 104 (1999), 133-136. MR 1685816 | Zbl 0928.03060
[4] Bassan, B., Spizzichino, F.: Relations among univariate aging, bivariate aging and dependence for exchangeable lifetimes. J. Multivariate Anal. 93 (2005), 313-339. DOI 10.1016/j.jmva.2004.04.002 | MR 2162641 | Zbl 1070.60015
[5] Birkhoff, G.: Lattice Theory. American Mathematical Society Colloquium Publishers, Providence 1967. MR 0227053 | Zbl 0537.06001
[6] Burris, S., Sankappanavar, H. P.: A Course in Universal Algebra. Springer-Verlag, New York 1981. MR 0648287 | Zbl 0478.08001
[7] Cooman, G. De, Kerre, E. E.: Order norms on bounded partially ordered sets. J. Fuzzy Math. 2 (1994), 281-310. MR 1280148 | Zbl 0814.04005
[8] Durante, F., Klement, E. P., al., R. Mesiar et: Conjunctors and their residual implicators: characterizations and construct methods. Mediterranean J. Math. 4 (2007), 343-356. DOI 10.1007/s00009-007-0122-1 | MR 2349892
[9] Fodor, J., Yager, R. R., Rybalov, A.: Structure of uninorms. Internat. J. Uncertainly, Fuzziness and Knowledge-Based Systems 5 (1997), 411-427. DOI 10.1142/S0218488597000312 | MR 1471619 | Zbl 1232.03015
[10] Gabbay, D., Metcalfe, G.: fuzzy logics based on $[0,1)$-continuous uninorms. Arch. Math. Logic 46 (2007), 425-449. DOI 10.1007/s00153-007-0047-1 | MR 2321585 | Zbl 1128.03015
[11] Gottwald, S.: A Treatise on Many-Valued Logics. Studies in Logic and Computation Vol. 9, Research Studies Press, Baldock 2001. MR 1856623 | Zbl 1048.03002
[12] Jenei, S.: A characterization theorem on the rotation construction for triangular norms. Fuzzy Sets and Systems 136 (2003), 283-289. MR 1984578 | Zbl 1020.03021
[13] Jenei, S.: How to construct left-continuous triangular norms-state of the art. Fuzzy Sets and Systems 143 (2004), 27-45. DOI 10.1016/j.fss.2003.06.006 | MR 2060271 | Zbl 1040.03021
[14] Jenei, S., Montagna, F.: A general method for constructing left-continuous $t$-norms. Fuzzy Sets and Systems 136 (2003), 263-282. MR 1984577 | Zbl 1020.03020
[15] Liu, H. W.: Semi-uninorm and implications on a complete lattice. Fuzzy Sets and Systems 191 (2012), 72-82. MR 2874824
[16] Ma, Z., Wu, W. M.: Logical operators on complete lattices. Inform. Sci. 55 (1991), 77-97. DOI 10.1016/0020-0255(91)90007-H | MR 1080449 | Zbl 0741.03010
[17] Mas, M., Monserrat, M., Torrens, J.: On left and right uninorms. Internat. J. Uncertainly, Fuzziness and Knowledge-Based Systems 9 (2001), 491-507. DOI 10.1142/S0218488501000909 | MR 1852342 | Zbl 1045.03029
[18] Mas, M., Monserrat, M., Torrens, J.: On left and right uninorms on a finite chain. Fuzzy Sets and Systems 146 (2004), 3-17. MR 2074199 | Zbl 1045.03029
[19] Mas, M., Monserrat, M., Torrens, J.: Two types of implications derived from uninorms. Fuzzy Sets and Systems 158 (2007), 2612-2626. MR 2363783 | Zbl 1125.03018
[20] Ruiz, D., Torrens, J.: Residual implications and co-implications from idempotent uninorms. Kybernetika 40 (2004), 21-38. MR 2068596 | Zbl 1249.94095
[21] García, F. Suárez, Álvarez, P. Gil: Two families of fuzzy intergrals. Fuzzy Sets and Systems 18 (1986), 67-81. DOI 10.1016/0165-0114(86)90028-X | MR 0825620
[22] Tsadiras, A. K., Margaritis, K. G.: the MYCIN certainty factor handling function as uninorm operator and its use as a threshold function in artificial neurons. Fuzzy Sets and Systems 93 (1998), 263-274. MR 1605312
[23] Wang, Z. D., Yu, Y. D.: Pseudo-$t$-norms and implication operators on a complete Brouwerian lattice. Fuzzy Sets and Systems 132 (2002), 113-124. MR 1936220 | Zbl 1013.03020
[24] Wang, Z. D.: Generating pseudo-$t$-norms and implication operators. Fuzzy Sets and Systems 157 (2006), 398-410. DOI 10.1016/j.fss.2005.05.047 | MR 2186235 | Zbl 1085.03020
[25] Wang, Z. D., Fang, J. X.: Residual operators of left and right uninorms on a complete lattice. Fuzzy Sets and Systems 160 (2009), 22-31. MR 2469427
[26] Wang, Z. D., Fang, J. X.: Residual coimplicators of left and right uninorms on a complete lattice. Fuzzy Sets and Systems 160 (2009), 2086-2096. MR 2555022 | Zbl 1183.03027
[27] Yager, R. R.: Uninorms in fuzzy system modeling. Fuzzy Sets and Systems 122 (2001), 167-175. DOI 10.1016/S0165-0114(00)00027-0 | MR 1839955
[28] Yager, R. R.: Defending against strategic manipulation in uninorm-based multi-agent decision making. European J. Oper. Res. 141 (2002), 217-232. DOI 10.1016/S0377-2217(01)00267-3 | MR 1925395 | Zbl 0998.90046
[29] Yager, R. R., Kreinovich, V.: Universal approximation theorem for uninorm-based fuzzy systems modeling. Fuzzy Sets and Systems 140 (2003), 331-339. MR 2021449 | Zbl 1040.93043
[30] Yager, R. R., Rybalov, A.: Uninorm aggregation operators. Fuzzy Sets and Systems 80 (1996), 111-120. DOI 10.1016/0165-0114(95)00133-6 | MR 1389951 | Zbl 0871.04007
Partner of
EuDML logo