Previous |  Up |  Next

Article

Keywords:
group of null sequences; $T$-sequence; characterized subgroup; $T$-characterized subgroup; $\mathfrak{g}$-closed subgroup
Summary:
Let $X$ be an Abelian topological group. A subgroup $H$ of $X$ is characterized if there is a sequence $\mathbf{u} = \{u_n\}$ in the dual group of $X$ such that $H= \{x\in X: \; (u_n,x)\to 1\}$. We reduce the study of characterized subgroups of $X$ to the study of characterized subgroups of compact metrizable Abelian groups. Let $c_0(X)$ be the group of all $X$-valued null sequences and $\mathfrak{u}_0$ be the uniform topology on $c_0(X)$. If $X$ is compact we prove that $c_0(X)$ is a characterized subgroup of $X^\mathbb{N}$ if and only if $X\cong \mathbb T^n\times F$, where $n\geq 0$ and $F$ is a finite Abelian group. For every compact Abelian group $X$, the group $c_0(X)$ is a $\mathfrak{g}$-closed subgroup of $X^\mathbb N$. Some general properties of $(c_0(X),\mathfrak{u}_0)$ and its dual group are given. In particular, we describe compact subsets of $(c_0(X),\mathfrak{u}_0)$.
References:
[1] Arhangel'skii A.V.: Open and close-to-open mappings. Relations among spaces. Trudy Moskov. Mat. Obsch. 15 (1966), 181–223. MR 0206909
[2] Arhangel'skii A.V., Tkachenko M.G.: Topological Groups and Related Structures. Atlantis Press/World Scientific, Amsterdam-Paris, 2008. MR 2433295
[3] Armacost D.: The Structure of Locally Compact Abelian Groups. Monographs and Textbooks in Pure and Applied Mathematics, 68, Marcel Dekker, Inc., New York, 1981. MR 0637201 | Zbl 0509.22003
[4] Aussenhofer L.: Contributions to the duality theory of Abelian topological groups and to the theory of nuclear groups. Dissertation, Tübingen, 1998; Dissertationes Math. (Rozprawy Mat.) 384 (1999), 113p. MR 1736984 | Zbl 0953.22001
[5] Barbieri G., Dikranjan D., Milan C., Weber H.: Answer to Raczkowski's question on convergent sequences of integers. Topology Appl. 132 (2003), 89–101. DOI 10.1016/S0166-8641(02)00366-8 | MR 1990082
[6] Barbieri G., Dikranjan D., Milan C., Weber H.: Convergent sequences in precompact group topologies. Appl. Gen. Topol. 6 (2005), 149–169. MR 2195810 | Zbl 1092.22001
[7] Barbieri G., Dikranjan D., Milan C., Weber H.: Topological torsion related to some recursive sequences of integers. Math. Nachr. 281 (2008), 930–950. DOI 10.1002/mana.200510650 | MR 2431568 | Zbl 1144.11059
[8] Beiglböck M., Steineder C., Winkler R.: Sequences and filters of characters characterizing subgroups of compact Abelian groups. Topology Appl. 153 (2006), 1682–1695. MR 2227021 | Zbl 1091.22001
[9] Biró A.: Strong characterizing sequences for subgroups of compact groups. J. Number Theory 121 (2006), 324–354. DOI 10.1016/j.jnt.2006.03.008 | MR 2274908 | Zbl 1153.11031
[10] Biró A.: Characterizations of groups generated by Kronecker sets. J. Théor. Nombres Bordeaux 19 (2007), 567–582. DOI 10.5802/jtnb.603 | MR 2388789 | Zbl 1159.11022
[11] Bíró A., Déshouillers J.-M., Sós V.T.: Good approximation and characterization of subgroups of $\mathbb{R}/\mathbb{Z}$. Studia Sci. Math. Hungar. 38 (2001), 97–113. MR 1877772
[12] Biró A., Sós V.T.: Strong characterizing sequences in simultaneous Diophantine approximation. J. Number Theory 99 (2003), 405–414. DOI 10.1016/S0022-314X(02)00068-9 | MR 1968461 | Zbl 1058.11047
[13] Borel J.P.: Sous-groupes de $\mathbb R$ liés à répartition modulo $1$ de suites. Ann. Fac. Sci. Toulouse Math. 5 (1983), 217–235. DOI 10.5802/afst.595 | MR 0747191
[14] Chasco M.J.: Pontryagin duality for metrizable groups. Arch. Math. 70 (1998), 22–28. DOI 10.1007/s000130050160 | MR 1487450 | Zbl 0899.22001
[15] Chasco M.J., Martín-Peinador E., Tarieladze V.: On Mackey topology for groups. Studia Math. 132 (1999), 257–284. MR 1669662 | Zbl 0930.46006
[16] Comfort W.W., Raczkowski S.U., Trigos-Arrieta F.J.: Making group topologies with, and without, convergent sequences. Appl. Gen. Topol. 7 (2006), 109–124. DOI 10.4995/agt.2006.1936 | MR 2284939 | Zbl 1135.22004
[17] Comfort W.W., Ross K.A.: Topologies induced by groups of characters. Fund. Math. 55 (1964), 283–291. MR 0169940
[18] Comfort W., Trigos-Arrieta F.-J., Ta Sun Wu: The Bohr compactification, modulo a metrizable subgroup. Fund. Math. 143 (1993), 119–136. MR 1240629 | Zbl 0872.22001
[19] Dikranjan D., Gabriyelyan S.S.: On characterized subgroups of compact abelian groups. Topology Appl. 160 (2013), 2427–2442. DOI 10.1016/j.topol.2013.07.037 | MR 3120657
[20] Dikranjan D., Kunen K.: Characterizing subgroups of compact abelian groups. J. Pure Appl. Algebra 208 (2007), 285–291. DOI 10.1016/j.jpaa.2005.12.011 | MR 2269843 | Zbl 1109.22002
[21] Dikranjan D., Martín-Peinador E., Tarieladze V.: Group valued null sequences and metrizable non-Mackey groups. Forum Math. DOI: 10.1515/forum-2011-0099, February 2012.
[22] Dikranjan D., Milan C., Tonolo A.: A characterization of the MAP abelian groups. J. Pure Appl. Algebra 197 (2005), 23–41. DOI 10.1016/j.jpaa.2004.08.021 | MR 2123978
[23] Dikranjan D., Prodanov I., Stojanov L.: Topological groups. Characters, Dualities, and Minimal Group Topologies. Marcel Dekker, Inc., New York-Basel, 1990. MR 1015288
[24] Eggleston H.G.: Sets of fractional dimensions which occur in some problems of number theory. Proc. London Math. Soc. 54 (1952), 42–93. MR 0048504 | Zbl 0045.16603
[25] Engelking R.: General Topology. Panstwowe Wydawnictwo Naukowe, Waszawa, 1977. MR 0500779 | Zbl 0684.54001
[26] Gabriyelyan S.S.: Groups of quasi-invariance and the Pontryagin duality. Topology Appl. 157 (2010), 2786–2802. DOI 10.1016/j.topol.2010.08.018 | MR 2729338 | Zbl 1207.54047
[27] Gabriyelyan S.S.: On $T$-sequences and characterized subgroups. Topology Appl. 157 (2010), 2834–2843. DOI 10.1016/j.topol.2010.09.002 | MR 2729343 | Zbl 1221.22009
[28] Gabriyelyan S.S.: On a generalization of Abelian sequential groups. Fund. Math. 221 (2013), 95–127. DOI 10.4064/fm221-2-1 | MR 3062915
[29] Gabriyelyan S.S.: Minimally almost periodic group topologies on infinite countable Abelian groups: A solution to a question by Comfort. preprint, 2010, arXiv.org/abs/1002.1468.
[30] Gabriyelyan S.S.: On $T$-characterized subgroups of compact Abelian groups. preprint, 2012.
[31] Glicksberg I.: Uniform boundedness for groups. Canad. J. Math. 14 (1962), 269–276. DOI 10.4153/CJM-1962-017-3 | MR 0155923 | Zbl 0109.02001
[32] Graev M.: Free topological groups. Izv. Akad. Nauk SSSR Ser. Mat. 12 (1948), 278–324. MR 0025474
[33] Hart J.E., Kunen K: Limits in function spaces and compact groups. Topology Appl. 151 (2005), 157–168. DOI 10.1016/j.topol.2003.08.036 | MR 2139749 | Zbl 1074.54013
[34] Hart J.E., Kunen K.: Limits in compact Abelian groups. Topology Appl. 153 (2006), 991–1002. DOI 10.1016/j.topol.2005.02.011 | MR 2203013 | Zbl 1093.54010
[35] Hewitt E., Ross K.A.: Abstract Harmonic Analysis. Vol. I, 2nd ed., Springer, Berlin, 1979. MR 0551496 | Zbl 0837.43002
[36] Kaplan S.: Extensions of the Pontryagin duality, I: Infinite products. Duke Math. J. 15 (1948), 649–658. DOI 10.1215/S0012-7094-48-01557-9 | MR 0026999
[37] Kraaikamp C., Liardet P.: Good approximations and continued fractions. Proc. Amer. Math. Soc. 112 (1991), 303–309. DOI 10.1090/S0002-9939-1991-1062392-7 | MR 1062392 | Zbl 0725.11033
[38] Larcher G.: A convergence problem connected with continued fractions. Proc. Amer. Math. Soc. 103 (1988), 718–722. DOI 10.1090/S0002-9939-1988-0947645-2 | MR 0947645 | Zbl 0659.10009
[39] Nienhuys J.: Construction of group topologies on Abelian groups. Fund. Math. 75 (1972), 101–116. MR 0302810 | Zbl 0213.03503
[40] Petersen K., Shapiro L.: Induced flows. Trans. Amer. Math. Soc. 177 (1973), 375–390. DOI 10.1090/S0002-9947-1973-0322839-1 | MR 0322839 | Zbl 0229.54036
[41] Protasov I.V., Zelenyuk E.G.: Topologies on abelian groups. Math. USSR Izv. 37 (1991), 445–460; Russian original: Izv. Akad. Nauk SSSR 54 (1990), 1090–1107. DOI 10.1070/IM1991v037n02ABEH002071 | MR 1086087 | Zbl 0997.22002
[42] Raczkowski S.U.: Totally bounded topological group topologies on the integers. Topology Appl. 121 (2002), 63–74. DOI 10.1016/S0166-8641(01)00110-9 | MR 1903683 | Zbl 1007.22003
[43] Rolewicz S.: Some remarks on monothetic groups. Colloq. Math. 13 (1964), 28–29. MR 0171876 | Zbl 0131.26901
[44] Siwiec F.: Sequence-covering and countably bi-quotient mapping. General Topology Appl. 1 (1971), 143–154. DOI 10.1016/0016-660X(71)90120-6 | MR 0288737
[45] Winkler R.: Ergodic group rotations, Hartman sets and Kronecker sequences. Monatsh. Math. 135 (2002), 333–343. DOI 10.1007/s006050200027 | MR 1914810 | Zbl 1008.37005
Partner of
EuDML logo