[1] al Lami, R. J. K., Škodová, M., Mikeš, J.:
On holomorphically projective mappings from equiaffine generally recurrent spaces onto Kählerian spaces. Arch. Math. (Brno) 42 (5) (2006), 291–299.
MR 2322415 |
Zbl 1164.53317
[2] Alekseevsky, D. V., Marchiafava, S.: Transformation of a quaternionic Kaehlerian manifold. C. R. Acad. Sci. Paris, Ser. I 320 (1995), 703–708.
[4] Beklemishev, D.V.: Differential geometry of spaces with almost complex structure. Geometria. Itogi Nauki i Tekhn., VINITI, Akad. Nauk SSSR, Moscow (1965), 165–212.
[5] Domashev, V. V., Mikeš, J.:
Theory of holomorphically projective mappings of Kählerian spaces. Math. Notes 23 (1978), 160–163, transl. from Mat. Zametki 23(2) (1978), 297–304.
DOI 10.1007/BF01153160
[6] Eisenhart, L. P.: Non–Riemannian Geometry. Princeton Univ. Press, 1926, AMS Colloq. Publ. 8 (2000).
[8] Hinterleitner, I., Mikeš, J.:
On F–planar mappings of spaces with affine connections. Note Mat. 27 (2007), 111–118.
MR 2367758 |
Zbl 1150.53009
[10] Hinterleitner, I., Mikeš, J.:
Projective equivalence and spaces with equi–affine connection. J. Math. Sci. 177 (2011), 546–550, transl. from Fundam. Prikl. Mat. 16 (2010), 47–54.
DOI 10.1007/s10958-011-0479-3 |
MR 2786490
[11] Hinterleitner, I., Mikeš, J.:
Geodesic Mappings and Einstein Spaces. Geometric Methods in Physics, Birkhäuser Basel, 2013, arXiv: 1201.2827v1 [math.DG], 2012, pp. 331–336.
Zbl 1268.53049
[12] Hinterleitner, I., Mikeš, J.:
Geodesic mappings of (pseudo-) Riemannian manifolds preserve class of differentiability. Miskolc Math. Notes 14 (2) (2013), 575–582.
MR 3144094 |
Zbl 1299.53041
[13] Hrdina, J.:
Almost complex projective structures and their morphisms. Arch. Math. (Brno) 45 (2009), 255–264.
MR 2591680 |
Zbl 1212.53022
[14] Hrdina, J., Slovák, J.:
Morphisms of almost product projective geometries. Proc. 10th Int. Conf. on Diff. Geom. and its Appl., DGA 2007, Olomouc, Hackensack, NJ: World Sci., 2008, pp. 253–261.
MR 2462798 |
Zbl 1168.53013
[15] Jukl, M., Juklová, L., Mikeš, J.:
Some results on traceless decomposition of tensors. J. Math. Sci. 174 (2011), 627–640.
DOI 10.1007/s10958-011-0321-y
[16] Mikeš, J.:
On holomorphically projective mappings of Kählerian spaces. Ukrain. Geom. Sb. 23 (1980), 90–98.
Zbl 0463.53013
[17] Mikeš, J.:
Special F—planar mappings of affinely connected spaces onto Riemannian spaces. Moscow Univ. Math. Bull. 49 (1994), 15–21, transl. from Vestnik Moskov. Univ. Ser. I Mat. Mekh. 1994, 18–24.
Zbl 0896.53035
[18] Mikeš, J.:
Holomorphically projective mappings and their generalizations. J. Math. Sci. 89 (1998), 13334–1353.
DOI 10.1007/BF02414875
[19] Mikeš, J., Pokorná, O.:
On holomorphically projective mappings onto Kählerian spaces. Rend. Circ. Mat. Palermo (2) Suppl. 69 (2002), 181–186.
MR 1972433 |
Zbl 1023.53015
[20] Mikeš, J., Shiha, M., Vanžurová, A.: Invariant objects by holomorphically projective mappings of Kähler spaces. 8th Int. Conf. APLIMAT 2009, 2009, pp. 439–444.
[21] Mikeš, J., Sinyukov, N. S.: On quasiplanar mappings of space of affine connection. Sov. Math. 27 (1983), 63–70, transl. from Izv. Vyssh. Uchebn. Zaved. Mat..
[22] Mikeš, J., Vanžurová, A., Hinterleitner, I.:
Geodesic Mappings and some Generalizations. Palacky University Press, Olomouc, 2009.
MR 2682926 |
Zbl 1222.53002
[23] Otsuki, T., Tashiro, Y.:
On curves in Kaehlerian spaces. Math. J. Okayama Univ. 4 (1954), 57–78.
Zbl 0057.14101
[24] Petrov, A . Z.: Simulation of physical fields. Gravitatsiya i Teor. Otnositelnosti 4–5 (1968), 7–21.
[25] Prvanović, M.: Holomorphically projective transformations in a locally product space. Math. Balkanica 1 (1971), 195–213.
[26] Sinyukov, N. S.:
Geodesic mappings of Riemannian spaces. Moscow: Nauka, 1979.
Zbl 0637.53020
[27] Škodová, M., Mikeš, J., Pokorná, O.:
On holomorphically projective mappings from equiaffine symmetric and recurrent spaces onto Kählerian spaces. Rend. Circ. Mat. Palermo (2) Suppl. 75 (2005), 309–316.
MR 2152369 |
Zbl 1109.53019
[29] Yano, K.:
Differential geometry on complex and almost complex spaces. vol. XII, Pergamon Press, 1965.
Zbl 0127.12405