Previous |  Up |  Next

Article

Keywords:
multiple-use confidence interval; simultaneous two-sided tolerance interval
Summary:
Numerical results for a simple linear regression indicate that the non-simultaneous two-sided tolerance intervals nearly satisfy the condition of multiple-use confidence intervals, see Lee and Mathew (2002), but the numerical computation of the limits of the multiple-use confidence intervals is needed. We modified the Lieberman–Miller method (1963) for computing the simultaneous two-sided tolerance intervals in a simple linear regression with independent normally distributed errors. The suggested tolerance intervals are the narrowest of all the known simultaneous two-sided tolerance intervals. The computation of the multiple-use confidence intervals based on the new simultaneous two-sided tolerance intervals is simple and fast.
References:
[1] Chvosteková, M.: Simultaneous two-sided tolerance intervals for a univariate linear regression model. Communications in Statistics, Theory and Methods 42 (2013), 1145–1152. DOI 10.1080/03610926.2012.724502 | MR 3031273
[2] Chvosteková, M.: Determination of two-sided tolerance interval in a linear regression model. Forum Statisticum Slovacum 6 (2010), 79–84.
[3] Chvosteková, M., Witkovský, V.: Exact likelihood ratio test for the parameters of the linear regression model with normal errors. Measurement Science Review 9 (2009), 1–8. DOI 10.2478/v10048-009-0003-9
[4] Krishnamoorthy, K., Mathew, T.: Statistical Tolerance Regions: Theory, Applications, and Computation. Wiley series in probability and statistics, Wiley, Chichester, 2009. MR 2500599
[5] Lee, Y., Mathew, T.: Advances on Theoretical and Methodological Aspects of Probability and Statistics. Taylor & Francis, London, 2002. MR 1987243
[6] Lieberman, G. J., Miller, R. G., Jr.: Simultaneous Tolerance intervals in regression. Biometrika 50 (1963), 155–168. DOI 10.1093/biomet/50.1-2.155 | MR 0158472 | Zbl 0124.35501
[7] Lieberman, G. J., Miller, R. G., Hamilton, M. A.: Unlimited simultaneous discrimination intervals in regression. Biometrika 54 (1967), 133–145. DOI 10.1093/biomet/54.1-2.133 | MR 0217953
[8] Limam, M. M. T., Thomas, R.: Simultaneous tolerance intervals for the linear regression model. Journal of the American Statistical Association 83 (1988), 801–804. DOI 10.1080/01621459.1988.10478666 | MR 0963808 | Zbl 0649.62030
[9] Mee, R. W., Eberhardt, K. R.: A Comparison of Uncertainty Criteria for Calibration. Technometrics 38 (1996), 221–229. DOI 10.1080/00401706.1996.10484501 | MR 1411879
[10] Mee, R. W., Eberhardt, K. R., Reeve, C. P.: Calibration and simultaneous tolerance intervals for regression. Technometrics 33 (1991), 211–219. DOI 10.1080/00401706.1991.10484808 | MR 1110358
[11] Scheffé, H.: A statistical theory of calibration. The Annals of Statistics 1 (1973), 1–37. DOI 10.1214/aos/1193342379 | MR 0336920
[12] Wilson, A. L.:: An approach to simultaneous tolerance intervals in regression. The Annals of Mathematical Statistics 38 (1967), 1536–1540. DOI 10.1214/aoms/1177698707 | MR 0217954 | Zbl 0183.20902
[13] Witkovský, V.:: On exact multiple-use linear calibration confidence intervals. In: MEASUREMENT 2013: 9th International Conference on Measurement, Smolenice, Slovakia, 2013, 35–38.
Partner of
EuDML logo