Previous |  Up |  Next

Article

Keywords:
convex optimization; nonlinear rescaling method; self-concordant functions
Summary:
Nonlinear rescaling is a tool for solving large-scale nonlinear programming problems. The primal-dual nonlinear rescaling method was used to solve two quadratic programming problems with quadratic constraints. Based on the performance of primal-dual nonlinear rescaling method on testing problems, the conclusions about setting up the parameters are made. Next, the connection between nonlinear rescaling methods and self-concordant functions is discussed and modified logarithmic barrier function is recommended as a suitable nonlinear rescaling function.
References:
[1] Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press, Cambridge, 2004. MR 2061575 | Zbl 1058.90049
[2] Griva, I., Nash, S. G., Sofer, A.: Linear and Nonlinear Optimization. Second edition, SIAM, Philadelphia, 2009. MR 2472514 | Zbl 1159.90002
[3] Kučera, R., Machalová, J., Netuka, H., Ženčák, P.: An interior-point algorithm for the minimization arising from 3D contact problems with friction. Optimization Methods and Software, (2013), in press. MR 3175463 | Zbl 1278.65090
[4] Nocedal, J., Wright, S. J.: Numerical Optimization. Second edition, Springer, New York, 2006. MR 2244940 | Zbl 1104.65059
[5] Polyak, R.: Modified barrier functions (theory and methods). Mathematical Programming 54 (1992), 177–222. DOI 10.1007/BF01586050 | MR 1158819 | Zbl 0756.90085
[6] Polyak, R.: Log-Sigmoid Multipliers Method in Constrained Optimization. Annals of Operations Research 101 (2001), 427–460. DOI 10.1023/A:1010938423538 | MR 1852524 | Zbl 0996.90088
[7] Polyak, R.: Nonlinear rescaling vs. Smoothing Technique in Convex Optimization. Mathematical Programming 92A (2002), 197–235. MR 1901258 | Zbl 1022.90014
[8] Polyak, R.: Nonlinear Rescaling as Interior Quadratic Prox Method in Convex Optimization. Computational Optimization and Applications 35 (2006), 347–373. DOI 10.1007/s10589-006-9759-0 | MR 2279496 | Zbl 1128.90047
[9] Polyak, R., Griva I.: Primal-Dual Nonlinear Rescaling Method for Convex Optimization. JOTA 122, 1 (2004), 111–156. DOI 10.1023/B:JOTA.0000041733.24606.99 | MR 2092474 | Zbl 1129.90339
[10] Polyak, R., Griva, I.: Primal-Dual Nonlinear Rescaling Method with Dynamic Scaling Parameter Update. Mathematical Programming 106A (2006), 237–259. MR 2208083 | Zbl 1134.90494
[11] Polyak, R., Griva, I.: 1.5-Q-superlinear convergence of an exterior-point method for constrained optimization. Journal of Global Optimization 40, 4 (2008), 679–695. DOI 10.1007/s10898-006-9117-x | MR 2377487 | Zbl 1149.90146
[12] Polyak, R., Griva, I.: Proximal Point Nonlinear Rescaling Method for Convex Optimization. Numerical Algebra, Control and Optimization 1, 2 (2011), 283–299. DOI 10.3934/naco.2011.1.283 | MR 2805932 | Zbl 1268.90046
[13] Polyak, R., Teboulle, M.: Nonlinear Rescaling and Proximal-Like Methods in Convex Optimization. Mathematical programming 76 (1997), 265–284. DOI 10.1007/BF02614440 | MR 1427187 | Zbl 0882.90106
Partner of
EuDML logo