[1] Anderson, T. W.:
An Introduction to Multivariate Statistical Analysis. John Wiley and Sons, New York 1958.
MR 0091588 |
Zbl 1039.62044
[2] Billingsley, P.:
Convergence of Probability Measures. First edition. John Wiley and Sons, New York 1968.
MR 0233396
[3] Bradley, R. C.:
Basic properties of strong mixing conditions. A survey and some open questions. Probab. Surveys 2 (2005), 107-144.
MR 2178042 |
Zbl 1189.60077
[5] Gallo, P. P.: Properties of Estimators in Errors-in-Variables Models. Ph.D. Thesis, University of North Carolina, Chapel Hill 1982.
[7] Golub, G. H., Loan, C. F. Van:
An analysis of the total least squares problem. SIAM J. Numer. Anal. 17 (1980), 6, 883-893.
DOI 10.1137/0717073 |
MR 0595451
[8] Healy, J. D.:
Estimation and Tests for Unknown Linear Restrictions in Multivariate Linear Models. Ph.D. Thesis, Purdue University 1975.
MR 2626067
[9] Herrndorf, N.:
A functional central limit theorem for strongly mixing sequence of random variables. Probab. Theory Rel. Fields 69 (1985), 4, 541-550.
MR 0791910
[10] Ibragimov, I. A., Linnik, Y. V.:
Independent and Stationary Sequences of Random Variables. Wolters-Noordhoff 1971.
MR 0322926 |
Zbl 0219.60027
[11] Lin, Z., Lu, C.:
Limit Theory for Mixing Dependent Random Variables. Springer-Verlag, New York 1997.
MR 1486580 |
Zbl 0889.60001
[12] Pešta, M.:
Strongly consistent estimation in dependent errors-in-variables. Acta Univ. Carolin. - Math. Phys. 52 (2011), 1, 69-79.
MR 2808295 |
Zbl 1228.62085
[13] Pešta, M.:
Total least squares and bootstrapping with application in calibration. Statistics: J. Theor. and Appl. Statistics 46 (2013), 5, 966-991.
DOI 10.1080/02331888.2012.658806
[14] Rosenblatt, M.:
Markov Processes: Structure and Asymptotic Behavior. Springer-Verlag, Berlin 1971.
MR 0329037 |
Zbl 0236.60002
[15] Utev, S. A.:
The central limit theorem for $\varphi$-mixing arrays of random variables. Theory Prob. Appl. 35 (1990), 131-139.
DOI 10.1137/1135013 |
MR 1050059