Previous |  Up |  Next

Article

Keywords:
anti-periodic solution; impulsive functional differential equation; fixed-point theorem; growth condition
Summary:
This paper is a continuation of Y. Liu, Anti-periodic solutions of nonlinear first order impulsive functional differential equations, Math. Slovaca 62 (2012), 695–720. By using Schaefer's fixed point theorem, new existence results on anti-periodic solutions of a class of nonlinear impulsive functional differential equations are established. The techniques to get the priori estimates of the possible solutions of the mentioned equations are different from those used in known papers. An example is given to illustrate the main theorems obtained. One sees easily that Example 3.1 can not be solved by Theorems 2.1–2.3 obtained in Liu's paper since (G2) in Theorem 2.1, (G4) in Theorem 2.2 and (G6) in Theorem 2.3 are not satisfied.
References:
[1] Aftabizadeh, A. R., Aizicovici, S., Pavel, N. H.: On a class of second-order anti-periodic boundary value problems. J. Math. Anal. Appl. 171 (1992), 301-320. DOI 10.1016/0022-247X(92)90345-E | MR 1194081 | Zbl 0767.34047
[2] Aftabizadeh, A. R., Aizicovici, S., Pavel, N. H.: Anti-periodic boundary value problems for higher order differential equations in Hilbert spaces. Nonlinear. Anal., Theory Methods Appl. 18 (1992), 253-267. DOI 10.1016/0362-546X(92)90063-K | MR 1148289 | Zbl 0779.34054
[3] Aftabizadeh, A. R., Huang, Y. K., Pavel, N. H.: Nonlinear third-order differential equations with anti-periodic boundary conditions and some optimal control problems. J. Math. Anal. Appl. 192 (1995), 266-293. DOI 10.1006/jmaa.1995.1171 | MR 1329424 | Zbl 0831.34019
[4] Aizicovici, S., McKibben, M., Reich, S.: Anti-periodic solutions to nonmonotone evolution equations with discontinuous nonlinearities. Nonlinear. Anal., Theory Methods Appl. 43 (2001), 233-251. DOI 10.1016/S0362-546X(99)00192-3 | MR 1790104 | Zbl 0977.34061
[5] Aizicovici, S., Reich, S.: Anti-periodic solutions to a class of non-monotone evolution equations. Discrete Contin. Dyn. Syst. 5 (1999), 35-42. MR 1664469 | Zbl 0961.34044
[6] Chen, Y.: On Massera's theorem for anti-periodic solution. Adv. Math. Sci. Appl. 9 (1999), 125-128. MR 1690436 | Zbl 0924.34037
[7] Chen, Y., Nieto, J. J., O'Regan, D.: Anti-periodic solutions for fully nonlinear first-order differential equations. Math. Comput. Modelling 46 (2007), 1183-1190. DOI 10.1016/j.mcm.2006.12.006 | MR 2376702 | Zbl 1142.34313
[8] Chen, Y., Wang, X., Xu, H.: Anti-periodic solutions for semilinear evolution equations. J. Math. Anal. Appl. 273 (2002), 627-636. DOI 10.1016/S0022-247X(02)00288-3 | MR 1932511 | Zbl 1055.34113
[9] Cheng, S., Zhang, G.: Existence of positive periodic solutions for non-autonomous functional differential equations. Electron. J. Differ. Equ. (electronic only) 2001 (2001), paper no. 59, 8 pages. MR 1863778 | Zbl 1003.34059
[10] Ding, W., Xing, Y., Han, M.: Anti-periodic boundary value problems for first order impulsive functional differential equations. Appl. Math. Comput. 186 (2007), 45-53. DOI 10.1016/j.amc.2006.07.087 | MR 2316490 | Zbl 1124.34039
[11] Fan, Q., Wang, W., Yi, X.: Anti-periodic solutions for a class of nonlinear $n$th-order differential equations with delays. J. Comput. Appl. Math. 230 (2009), 762-769. DOI 10.1016/j.cam.2009.01.005 | MR 2536005 | Zbl 1182.34088
[12] Franco, D., Nieto, J.: First order impulsive ordinary differential equations with anti-periodic and nonlinear boundary conditions. Nonlinear Anal., Theory Methods Appl. 42 (2000), 163-173. DOI 10.1016/S0362-546X(98)00337-X | MR 1773975 | Zbl 0966.34025
[13] Franco, D., Nieto, J.: Maximum principles for periodic impulsive first order problems. J. Comput. Appl. Math. 88 (1998), 149-159. DOI 10.1016/S0377-0427(97)00212-4 | MR 1609074 | Zbl 0898.34010
[14] Franco, D., Nieto, J., O'Regan, D.: Anti-periodic boundary value problem for nonlinear first order ordinary differential equations. Math. Inequal. Appl. 6 (2003), 477-485. MR 1992487 | Zbl 1097.34015
[15] Gaines, R., Mawhin, J.: Coincidence Degree, and Nonlinear Differential Equations. Lecture Notes in Mathematics 568 Springer, Berlin (1977). DOI 10.1007/BFb0089537 | MR 0637067 | Zbl 0339.47031
[16] Lakshmikantham, V. V., Bajnov, D. D., Simeonov, P. S.: Theory of Impulsive Differential Equations. Series in Modern Applied Mathematics 6 World Scientific Publishing, Singapore (1989). MR 1082551 | Zbl 0719.34002
[17] Liu, Y.: Anti-periodic boundary value problems for nonlinear impulsive functional differential equations. Fasc. Math. 39 (2008), 27-45. MR 2435788 | Zbl 1163.34052
[18] Liu, Y.: Anti-periodic solutions of nonlinear first order impulsive functional differential equations. Math. Slovaca 62 (2012), 695-720. DOI 10.2478/s12175-012-0039-4 | MR 2947975 | Zbl 1274.34229
[19] Liu, Y.: Further results on positive periodic solutions of impulsive functional differential equations and applications. ANZIAM J. 50 (2009), 513-533. DOI 10.1017/S1446181108000230 | MR 2571296 | Zbl 1193.34167
[20] Liu, Y.: A survey and some new results on the existence of solutions of PBVPs for first order functional differential equations. Appl. Math., Praha 54 (2009), 527-549. DOI 10.1007/s10492-009-0032-6 | MR 2563123 | Zbl 1212.34184
[21] Luo, Z., Shen, J., Nieto, J.: Antiperiodic boundary value problem for first-order impulsive ordinary differential equations. Comput. Math. Appl. 49 (2005), 253-261. DOI 10.1016/j.camwa.2004.08.010 | MR 2123404 | Zbl 1084.34018
[22] Mawhin, J.: Topological Degree Methods in Nonlinear Boundary Value Problems. Regional Conference Series in Mathematics 40 AMS, Providence, R.I. (1979). MR 0525202 | Zbl 0414.34025
[23] Okochi, H.: On the existence of periodic solutions to nonlinear abstract parabolic equations. J. Math. Soc. Japan 40 (1988), 541-553. DOI 10.2969/jmsj/04030541 | MR 0945351 | Zbl 0679.35046
[24] Wang, K.: A new existence result for nonlinear first-order anti-periodic boundary value problems. Appl. Math. Lett. 21 (2008), 1149-1154. DOI 10.1016/j.aml.2007.12.013 | MR 2459839 | Zbl 1168.34315
[25] Wang, K., Li, Y.: A note on existence of (anti-)periodic and heteroclinic solutions for a class of second-order ODEs. Nonlinear Anal., Theory Methods Appl. 70 (2009), 1711-1724. DOI 10.1016/j.na.2008.02.054 | MR 2483592 | Zbl 1167.34012
[26] Wang, W., Shen, J.: Existence of solutions for anti-periodic boundary value problems. Nonlinear Anal., Theory Methods Appl. 70 (2009), 598-605. DOI 10.1016/j.na.2007.12.031 | MR 2468405 | Zbl 1165.34007
[27] Yin, Y.: Monotone iterative technique and quasilinearization for some anti-periodic problems. Nonlinear World 3 (1996), 253-266. MR 1390017 | Zbl 1013.34015
[28] Yin, Y.: Remarks on first order differential equations with anti-periodic boundary conditions. Nonlinear Times Dig. 2 (1995), 83-94. MR 1333336 | Zbl 0832.34018
Partner of
EuDML logo