[3] Aftabizadeh, A. R., Huang, Y. K., Pavel, N. H.:
Nonlinear third-order differential equations with anti-periodic boundary conditions and some optimal control problems. J. Math. Anal. Appl. 192 (1995), 266-293.
DOI 10.1006/jmaa.1995.1171 |
MR 1329424 |
Zbl 0831.34019
[5] Aizicovici, S., Reich, S.:
Anti-periodic solutions to a class of non-monotone evolution equations. Discrete Contin. Dyn. Syst. 5 (1999), 35-42.
MR 1664469 |
Zbl 0961.34044
[6] Chen, Y.:
On Massera's theorem for anti-periodic solution. Adv. Math. Sci. Appl. 9 (1999), 125-128.
MR 1690436 |
Zbl 0924.34037
[9] Cheng, S., Zhang, G.:
Existence of positive periodic solutions for non-autonomous functional differential equations. Electron. J. Differ. Equ. (electronic only) 2001 (2001), paper no. 59, 8 pages.
MR 1863778 |
Zbl 1003.34059
[14] Franco, D., Nieto, J., O'Regan, D.:
Anti-periodic boundary value problem for nonlinear first order ordinary differential equations. Math. Inequal. Appl. 6 (2003), 477-485.
MR 1992487 |
Zbl 1097.34015
[16] Lakshmikantham, V. V., Bajnov, D. D., Simeonov, P. S.:
Theory of Impulsive Differential Equations. Series in Modern Applied Mathematics 6 World Scientific Publishing, Singapore (1989).
MR 1082551 |
Zbl 0719.34002
[17] Liu, Y.:
Anti-periodic boundary value problems for nonlinear impulsive functional differential equations. Fasc. Math. 39 (2008), 27-45.
MR 2435788 |
Zbl 1163.34052
[22] Mawhin, J.:
Topological Degree Methods in Nonlinear Boundary Value Problems. Regional Conference Series in Mathematics 40 AMS, Providence, R.I. (1979).
MR 0525202 |
Zbl 0414.34025
[27] Yin, Y.:
Monotone iterative technique and quasilinearization for some anti-periodic problems. Nonlinear World 3 (1996), 253-266.
MR 1390017 |
Zbl 1013.34015
[28] Yin, Y.:
Remarks on first order differential equations with anti-periodic boundary conditions. Nonlinear Times Dig. 2 (1995), 83-94.
MR 1333336 |
Zbl 0832.34018