Previous |  Up |  Next

Article

Keywords:
two-step nilpotent Lie algebra; base; minimal system of generators; related sets; $H$-minimal system of generators
Summary:
A Lie algebra $\mathfrak {g}$ is called two step nilpotent if $\mathfrak {g}$ is not abelian and $[\mathfrak {g},\mathfrak {g}]$ lies in the center of $\mathfrak {g}$. Two step nilpotent Lie algebras are useful in the study of some geometric problems, such as commutative Riemannian manifolds, weakly symmetric Riemannian manifolds, homogeneous Einstein manifolds, etc. Moreover, the classification of two-step nilpotent Lie algebras has been an important problem in Lie theory. In this paper, we study two step nilpotent indecomposable Lie algebras of dimension $8$ over the field of complex numbers. Based on the study of minimal systems of generators, we choose an appropriate basis and give a complete classification of two step nilpotent Lie algebras of dimension $8$.
References:
[1] Ancochea-Bermudez, J. M., Goze, M.: Classification des algèbres de Lie nilpotentes complexes de dimension $7$. (Classification of nilpotent complex Lie algebras of dimension $7$). Arch. Math. 52 (1989), 175-185 French. DOI 10.1007/BF01191272 | MR 0985602 | Zbl 0672.17005
[2] Ancochea-Bermudez, J. M., Goze, M.: Classification des algèbres de Lie filiformes de dimension $8$. (Classification of filiform Lie algebras in dimension $8$). Arch. Math. 50 (1988), 511-525 French. DOI 10.1007/BF01193621 | MR 0948265 | Zbl 0628.17005
[3] Carles, R.: Sur la structure des algèbres de Lie rigides. (On the structure of the rigid Lie algebras). Ann. Inst. Fourier 34 (1984), 65-82. DOI 10.5802/aif.978 | MR 0762694 | Zbl 0519.17004
[4] Favre, G.: Systeme de poids sur une algèbre de Lie nilpotente. Manuscr. Math. 9 (1973), 53-90. DOI 10.1007/BF01320668 | MR 0349780 | Zbl 0253.17011
[5] Galitski, L. Y., Timashev, D. A.: On classification of metabelian Lie algebras. J. Lie Theory 9 (1999), 125-156. MR 1680007 | Zbl 0923.17015
[6] Gauger, M. A.: On the classification of metabelian Lie algebras. Trans. Am. Math. Soc. 179 (1973), 293-329. DOI 10.1090/S0002-9947-1973-0325719-0 | MR 0325719 | Zbl 0267.17015
[7] Gong, M. P.: Classification of Nilpotent Lie Algebras of Dimension $7$ (Over Algebraically Closed Fields and $R$). Ph.D. Thesis University of Waterloo, Waterloo (1998). MR 2698220
[8] Goze, M., Khakimdjanov, Y.: Nilpotent Lie Algebras. Mathematics and its Applications 361. Kluwer Academic Publishers Dordrecht (1996). MR 1383588
[9] Leger, G., Luks, E.: On derivations and holomorphs of nilpotent Lie algebras. Nagoya Math. J. 44 (1971), 39-50. DOI 10.1017/S0027763000014525 | MR 0297828 | Zbl 0264.17003
[10] Ren, B., Meng, D.: Some $2$-step nilpotent Lie algebras. I. Linear Algebra Appl. 338 (2001), 77-98. DOI 10.1016/S0024-3795(01)00367-6 | MR 1860314 | Zbl 0992.17005
[11] Ren, B., Zhu, L. S.: Classification of $2$-step nilpotent Lie algebras of dimension $8$ with $2$-dimensional center. Commun. Algebra 39 (2011), 2068-2081. DOI 10.1080/00927872.2010.483342 | MR 2813164
[12] Revoy, P.: Algèbres de Lie metabeliennes. Ann. Fac. Sci. Toulouse, V. Ser., Math. 2 (1980), 93-100 French. DOI 10.5802/afst.547 | MR 0595192 | Zbl 0447.17007
[13] Santharoubane, L. J.: Kac-Moody Lie algebra and the classification of nilpotent Lie algebras of maximal rank. Can. J. Math. 34 (1982), 1215-1239. DOI 10.4153/CJM-1982-084-5 | MR 0678665
[14] Seeley, C.: $7$-dimensional nilpotent Lie algebras. Trans. Am. Math. Soc. 335 (1993), 479-496. MR 1068933 | Zbl 0770.17003
[15] Umlauf, K. A.: Ueber den Zusammenhang der endlichen continuirlichen Transformationsgruppen, insbesondere der Gruppen vom Range Null. Ph.D. Thesis University of Leipzig (1891), German.
Partner of
EuDML logo