[1] Abłamowicz, R., Fauser, B., eds.:
Clifford Algebras and Their Applications in Mathematical Physics. Proceedings of the 5th Conference, Ixtapa-Zihuatanejo, Mexico, June 27--July 4, 1999. Volume 1: Algebra and Physics. Progress in Physics 18 Birkhäuser, Boston (2000).
MR 1783520
[4] Brezis, H.:
Functional Analysis, Sobolev Spaces and Partial Differential Equations. Universitext Springer, New York (2011).
MR 2759829 |
Zbl 1220.46002
[6] Delanghe, R., Sommen, F., Souček, V.:
Clifford Algebra and Spinor-Valued Functions. A Function Theory for the Dirac Operator. Related REDUCE Software by F. Brackx and D. Constales. Mathematics and its Applications Kluwer Academic Publishers, Dordrecht (1992).
MR 1169463 |
Zbl 0747.53001
[7] Diening, L., Harjulehto, P., Hästö, P., Růžička, M.:
Lebesgue and Sobolev Spaces with Variable Exponents. Lecture Notes in Mathematics 2017 Springer, Berlin (2011).
MR 2790542 |
Zbl 1222.46002
[8] Doran, C., Lasenby, A.:
Geometric Algebra for Physicists. Cambridge University Press Cambridge (2003).
MR 1998960 |
Zbl 1078.53001
[9] Ekeland, I., Témam, R.:
Convex Analysis and Variational Problems. Unabridged, corrected republication of the 1976 English original. Classics in Applied Mathematics 28 Society for Industrial and Applied Mathematics, Philadelphia (1999).
MR 1727362 |
Zbl 0939.49002
[11] Fan, X., Zhao, D.:
On the spaces $L^{p(x)}\{\Omega\}$ and $W^{m,p(x)}\{\Omega\}$. J. Math. Anal. Appl. 263 (2001), 424-446.
MR 1866056 |
Zbl 1028.46041
[16] Fu, Y., Zhang, B.:
Clifford valued weighted variable exponent spaces with an application to obstacle problems. Advances in Applied Clifford Algebras 23 (2013), 363-376.
DOI 10.1007/s00006-013-0383-7 |
MR 3068124
[17] Gilbert, J. E., Murray, M. A. M.:
Clifford Algebra and Dirac Operators in Harmonic Analysis. Paperback reprint of the hardback edition 1991. Cambridge Studies in Advanced Mathematics 26 Cambridge University Press, Cambridge (2008).
MR 1130821
[18] Gürlebeck, K., Sprößig, W.:
Quaternionic and Clifford Calculus for Physicists and Engineers. Mathematical Methods in Practice Wiley, Chichester (1997).
Zbl 0897.30023
[19] Gürlebeck, K., Habetha, K., Sprößig, W.:
Holomorphic Functions in the Plane and $n$-dimensional Space. Transl. from the German Birkhäuser, Basel (2008).
MR 2369875 |
Zbl 1132.30001
[21] Gürlebeck, K., Sprößig, W.:
Quaternionic Analysis and Elliptic Boundary Value Problems. International Series of Numerical Mathematics 89 Birkhäuser, Basel (1990).
MR 1096955 |
Zbl 0850.35001
[22] Harjulehto, P., Hästö, P., Lê, Ú. V., Nuortio, M.:
Overview of differential equations with non-standard growth. Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 72 (2010), 4551-4574.
DOI 10.1016/j.na.2010.02.033 |
MR 2639204 |
Zbl 1188.35072
[23] Heinonen, J., Kilpeläinen, T., Martio, O.:
Nonlinear Potential Theory of Degenerate Elliptic Equations. Unabridged republication of the 1993 original Dover Publications, Mineola (2006).
MR 2305115 |
Zbl 1115.31001
[24] Kováčik, O., Rákosník, J.:
On spaces $L^{p(x)}$ and $W^{k,p(x)}$. Czech. Math. J. 41 (1991), 592-618.
MR 1134951
[27] Nolder, C. A.:
$A$-harmonic equations and the Dirac operator. J. Inequal. Appl. (2010), Article ID 124018, 9 pages.
MR 2651833 |
Zbl 1207.35144
[31] Ryan, J., Sprößig, W., eds.:
Clifford Algebras and Their Applications in Mathematical Physics. Papers of the 5th International Conference, Ixtapa-Zihuatanejo, Mexico, June 27--July 4, 1999. Volume 2: Clifford Analysis. Progress in Physics 19 Birkhäuser, Boston (2000).
MR 1771360