[2] Bergelson, V., Junco, A. Del, Lemańczyk, M., Rosenblatt, J.: Rigidity and non-recurrence along sequences. Preprint 2011, arXiv:1103.0905.
[3] Bergelson, V., Haland, I. J.:
Sets of recurrence and generalized polynomials. V. Bergelson, et al. Convergence in Ergodic Theory and Probability Papers from the conference, Ohio State University, Columbus, OH, USA, June 23-26, 1993, de Gruyter, Berlin, Ohio State Univ. Math. Res. Inst. Publ. 5 (1996), 91-110.
MR 1412598 |
Zbl 0958.28014
[7] Furstenberg, H.:
Recurrence in Ergodic Theory and Combinatorial Number Theory. Princeton University Press, Princeton, N. J. (1981).
MR 0603625 |
Zbl 0459.28023
[10] Glasner, E., Weiss, B.:
On the interplay between measurable and topological dynamics. Handbook of Dynamical Systems vol. 1B B. Hasselblatt et al. Amsterdam, Elsevier (2006), 597-648.
MR 2186250 |
Zbl 1130.37303
[12] Kannan, R., Lovász, L.:
Covering minima and lattice-point-free convex bodies. Ann. Math. (2) 128 (1988), 577-602.
MR 0970611 |
Zbl 0659.52004
[15] Pestov, V.:
Forty-plus annotated questions about large topological groups. Open Problems in Topology II Elliott M. Pearl Elsevier, Amsterdam (2007), 439-450.
MR 2023411
[16] Petersen, K.:
Ergodic Theory. Cambridge Studies in Advanced Mathematics 2 Cambridge University Press, Cambridge (1983).
MR 0833286 |
Zbl 0507.28010
[17] Queffélec, M.:
Substitution Dynamical Systems. Spectral analysis. 2nd ed. Lecture Notes in Mathematics 1294. Springer, Berlin (2010).
MR 2590264 |
Zbl 1225.11001
[20] Weiss, B.:
Single Orbit Dynamics. CBMS Regional Conference Series in Math. 95. AMS, Providence (2000).
MR 1727510 |
Zbl 1083.37500