Previous |  Up |  Next

Article

Keywords:
nonparametric regression; $\alpha$-mixing dependence; adaptive estimation; wavelet methods; rates of convergence
Summary:
We investigate the estimation of a multidimensional regression function $f$ from $n$ observations of an $\alpha$-mixing process $(Y,X)$, where $Y=f(X)+\xi$, $X$ represents the design and $\xi$ the noise. We concentrate on wavelet methods. In most papers considering this problem, either the proposed wavelet estimator is not adaptive (i.e., it depends on the knowledge of the smoothness of $f$ in its construction) or it is supposed that $\xi$ is bounded or/and has a known distribution. In this paper, we go far beyond this classical framework. Under no boundedness assumption on $\xi$ and no a priori knowledge on its distribution, we construct adaptive term-by-term thresholding wavelet estimators attaining ``sharp'' rates of convergence under the mean integrated squared error over a wide class of functions $f$.
References:
[1] Antoniadis A.: Wavelets in statistics: a review (with discussion). J. Italian Statistical Society Series B 6 (1997), 97–144. DOI 10.1007/BF03178905
[2] Antoniadis A., Grégoire G., Vial P.: Random design wavelet curve smoothing. Statist. Probab. Lett. 35 (1997), 225–232. DOI 10.1016/S0167-7152(97)00017-5 | MR 1484959 | Zbl 0889.62029
[3] Antoniadis A., Bigot J., Sapatinas T.: Wavelet estimators in nonparametric regression: a comparative simulation study. J. Statist. Software 6 (2001), no. 6.
[4] Antoniadis A., Leporini D.. Pesquet J.-C.: Wavelet thresholding for some classes of non-Gaussian noise. Statist. Neerlandica 56 (2002), no. 4, 434–453. DOI 10.1111/1467-9574.00211 | MR 2027535
[5] Baraud Y., Comte F., Viennet G.: Adaptive estimation in autoregression or $\beta $-mixing regression via model selection. Ann. Statist. 29 (2001), no. 3, 839–875. MR 1865343 | Zbl 1012.62034
[6] Benatia F., Yahia D.: Nonlinear wavelet regression function estimator for censored dependent data. J. Afr. Stat. 7 (2012), 391–411. MR 3034386 | Zbl 1258.62046
[7] Beran J., Shumeyko Y.: On asymptotically optimal wavelet estimation of trend functions under long-range dependence. Bernoulli 18 (2012), no. 1, 137–176. DOI 10.3150/10-BEJ332 | MR 2888702 | Zbl 1235.62124
[8] Bochkina N., Sapatinas T.: Minimax rates of convergence and optimality of Bayes factor wavelet regression estimators under pointwise risks. Statist. Sinica 19 (2009), 1389–1406. MR 2589188 | Zbl 1191.62069
[9] Bradley R.C.: Introduction to Strong Mixing Conditions. Vol. 1, 2, 3, Kendrick Press, Heber City, UT, 2007. MR 2325294 | Zbl 1134.60004
[10] Cai T.: Adaptive wavelet estimation: a block thresholding and oracle inequality approach. Ann. Statist. 27 (1999), 898–924. MR 1724035 | Zbl 0954.62047
[11] Cai, T.: On block thresholding in wavelet regression: adaptivity, block size and threshold level. Statist. Sinica 12 (2002), 1241–1273. MR 1947074 | Zbl 1004.62036
[12] Cai T., Brown L.D.: Wavelet shrinkage for nonequispaced samples. Ann. Statist. 26 (1998), 1783–1799. DOI 10.1214/aos/1024691357 | MR 1673278 | Zbl 0929.62047
[13] Cai T., Brown L.D.: Wavelet estimation for samples with random uniform design. Statist. Probab. Lett. 42 (1999), 313–321. DOI 10.1016/S0167-7152(98)00223-5 | MR 1688134 | Zbl 0940.62037
[14] Carrasco M., Chen X.: Mixing and moment properties of various GARCH and stochastic volatility models. Econometric Theory 18 (2002), 17–39. DOI 10.1017/S0266466602181023 | MR 1885348 | Zbl 1181.62125
[15] Chaubey Y.P., Shirazi E.: On MISE of a nonlinear wavelet estimator of the regression function based on biased data under strong mixing. Comm. Statist. Theory Methods(to appear).
[16] Chaubey Y.P., Chesneau C., Shirazi E.: Wavelet-based estimation of regression function for dependent biased data under a given random design. J. Nonparametr. Stat. 25 (2013), no. 1, 53–71. DOI 10.1080/10485252.2012.734619 | MR 3039970
[17] Chesneau C.: Regression with random design: a minimax study. Statist. Probab. Lett. 77 (2007), no. 1, 40–53. DOI 10.1016/j.spl.2006.05.010 | MR 2339017 | Zbl 1109.62028
[18] Chesneau C.: Adaptive wavelet regression in random design and general errors with weakly dependent data. Acta Univ. Apulensis Math. Inform 29 (2012), 65–84. MR 3015056
[19] Chesneau C., Fadili J.: Adaptive wavelet estimation of a function in an indirect regression model. AStA Adv. Stat. Anal. 96 (2012), no. 1, 25–46. DOI 10.1007/s10182-011-0157-2 | MR 2878037
[20] Chesneau C., Shirazi E.: Nonparametric wavelet regression based on biased data. Comm. Statist. Theory Methods(to appear).
[21] Chesneau C., Kachour M., Navarro F.: A note on the adaptive estimation of a quadratic functional from dependent observations. IStatistik: Journal of the Turkish Statistical Association 6 (2013), no. 1, 10–26. MR 3086320
[22] Clyde M.A., George E.I.: Empirical Bayes estimation in wavelet nonparametric regression. in Bayesian Inference in Wavelet-based Models, Lecture Notes in Statistics, 141, Springer, New York, 1999, pp. 309-322. DOI 10.1007/978-1-4612-0567-8_19 | MR 1699849 | Zbl 0936.62008
[23] Cohen A., Daubechies I., Jawerth B., Vial P.: Wavelets on the interval and fast wavelet transforms. Appl. Comput. Harmon. Anal. 24 (1993), no. 1, 54–81. DOI 10.1006/acha.1993.1005 | MR 1256527
[24] Daubechies I.: Ten Lectures on Wavelets. SIAM, Philadelphia, PA, 1992. MR 1162107 | Zbl 1006.42030
[25] Davydov Y.: The invariance principle for stationary processes. Theor. Probab. Appl. 15 (1970), no. 3, 498–509. DOI 10.1137/1115050 | MR 0283872 | Zbl 0219.60030
[26] Delouille V., Franke J., von Sachs R.: Nonparametric stochastic regression with design-adapted wavelets. Sankhya Ser. A 63 (2001), 328–366. MR 1897046 | Zbl 1192.62115
[27] Delyon B., Juditsky A.: On minimax wavelet estimators. Appl. Comput. Harmon. Anal. 3 (1996), 215–228. DOI 10.1006/acha.1996.0017 | MR 1400080 | Zbl 0865.62023
[28] DeVore R., Popov V.: Interpolation of Besov spaces. Trans. Amer. Math. Soc. 305 (1998), 397–414. DOI 10.1090/S0002-9947-1988-0920166-3 | MR 0920166 | Zbl 0646.46030
[29] Donoho D.L., Johnstone I.M.: Ideal spatial adaptation by wavelet shrinkage. Biometrika 81 (1994), 425–455. DOI 10.1093/biomet/81.3.425 | MR 1311089 | Zbl 0815.62019
[30] Donoho D.L., Johnstone I.M.: Adapting to unknown smoothness via wavelet shrinkage. J. Amer. Statist. Assoc. 90 (1995), no. 432, 1200–1224. DOI 10.1080/01621459.1995.10476626 | MR 1379464 | Zbl 0869.62024
[31] Donoho D.L., Johnstone I.M., Kerkyacharian G., Picard D.: Wavelet shrinkage: asymptopia? (with discussion). J. Royal Statist. Soc. Ser. B 57, 301–369. MR 1323344
[32] Doosti H., Afshari M., Niroumand H.A.: Wavelets for nonparametric stochastic regression with mixing stochastic process. Comm. Statist. Theory Methods 37 (2008), no. 3, 373–385. DOI 10.1080/03610920701653003 | MR 2432291
[33] Doosti H., Islam M.S., Chaubey Y.P., Gora P.: Two dimensional wavelets for nonlinear autoregressive models with an application in dynamical system. Ital. J. Pure Appl. Math. 27 (2010), 39–62. MR 2826252
[34] Doosti H., Niroumand H.A.: Multivariate stochastic regression estimation by wavelets for stationary time series. Pakistan J. Statist. 25 (2009), no. 1, 37–46. MR 2492520
[35] Doukhan P.: Mixing. Properties and examples. Lecture Notes in Statistics, 85, Springer, New York, 1994. DOI 10.1007/978-1-4612-2642-0 | MR 1312160 | Zbl 0801.60027
[36] Hall P., Turlach B.A.: Interpolation methods for nonlinear wavelet regression with irregularly spaced design. Ann. Statist. 25 (1997), 1912–1925. DOI 10.1214/aos/1069362378 | MR 1474074 | Zbl 0881.62044
[37] Härdle W.: Applied Nonparametric Regression. Cambridge University Press, Cambridge, 1990. MR 1161622 | Zbl 0851.62028
[38] Härdle W., Kerkyacharian G., Picard D., Tsybakov A.: Wavelet, approximation and statistical applications. Lectures Notes in Statistics, 129, Springer, New York, 1998. DOI 10.1007/978-1-4612-2222-4 | MR 1618204
[39] Kerkyacharian G., Picard D.: Thresholding algorithms, maxisets and well-concentrated bases. Test 9 (2000), no. 2, 283–344. DOI 10.1007/BF02595738 | MR 1821645 | Zbl 1107.62323
[40] Kerkyacharian G., Picard D.: Regression in random design and warped wavelets. Bernoulli 10 (2004), no. 6, 1053–1105. DOI 10.3150/bj/1106314850 | MR 2108043 | Zbl 1067.62039
[41] Kulik R., Raimondo M.: Wavelet regression in random design with heteroscedastic dependent errors. Ann. Statist. 37 (2009), 3396–3430. DOI 10.1214/09-AOS684 | MR 2549564
[42] Liang H.: Asymptotic normality of wavelet estimator in heteroscedastic model with $\alpha$-mixing errors. J. Syst. Sci. Complex. 24 (2011), no. 4, 725–737. DOI 10.1007/s11424-010-8354-8 | MR 2835351 | Zbl 1255.93136
[43] Li Y.M., Guo J.H.: Asymptotic normality of wavelet estimator for strong mixing errors. J. Korean Statist. Soc. 38 (2009), no. 4, 383–390. DOI 10.1016/j.jkss.2009.03.002 | MR 2582481
[44] Li Y.M., Yin C.D., Wei G.D.: On the asymptotic normality for mixing dependent errors of wavelet regression function estimator. Acta Mathematicae Applicatae Sinica 31 (2008), 1046–1055. MR 2509883
[45] Li L., Xiao Y.: Mean integrated squared error of nonlinear wavelet-based estimators with long memory data. Ann. Inst. Statist. Math. 59 (2007), 299–324. DOI 10.1007/s10463-006-0048-6 | MR 2394169
[46] Liebscher E.: Estimation of the density and the regression function under mixing conditions. Statist. Decisions 19 (2001), no. 1, 9–26. MR 1817218 | Zbl 1179.62051
[47] Lütkepohl H.: Multiple Time Series Analysis. Springer, Heidelberg, 1992. Zbl 1141.62071
[48] Mallat S.: A Wavelet Tour of Signal Processing. The Sparse Way. third edition, with contributions from Gabriel Peyré, Elsevier/Academic Press, Amsterdam, 2009. MR 2479996 | Zbl 1170.94003
[49] Masry E.: Wavelet-based estimation of multivariate regression functions in Besov spaces. J. Nonparametr. Statist. 12 (2000), no. 2, 283–308. DOI 10.1080/10485250008832809 | MR 1752317 | Zbl 0982.62038
[50] Meyer Y.: Wavelets and Operators. Cambridge University Press, Cambridge, 1992. MR 1228209 | Zbl 0819.42016
[51] Neumann M.H., von Sachs R.: Wavelet thresholding: beyond the Gaussian i.i.d. situation. in: Antoniadis A. and Oppenheim G. (eds.), Wavelets and Statistics (Villard de Lans, 1994), Lecture Notes in Statistics, 103, Springer, New York, 1995, pp. 301–330. MR 1364677 | Zbl 0831.62071
[52] Patil P.N., Truong Y.K.: Asymptotics for wavelet based estimates of piecewise smooth regression for stationary time series. Ann. Inst. Statist. Math. 53 (2001), no. 1, 159–178. DOI 10.1023/A:1017928823619 | MR 1820955 | Zbl 0995.62092
[53] Pensky M., Sapatinas T.: Frequentist optimality of Bayes factor estimators in wavelet regression models. Statist. Sinica 17 (2007), 599–633. MR 2408682 | Zbl 1144.62004
[54] Porto R.F., Morettin P.A., Aubin E.C.Q.: Wavelet regression with correlated errors on a piecewise Hölder class. Statist. Probab. Lett. 78 (2008), 2739–2743. DOI 10.1016/j.spl.2008.03.015 | MR 2465116 | Zbl 1256.62019
[55] Roussas G.G.: Nonparametric regression estimation under mixing conditions. Stochastic Process. Appl. 36 (1990), no. 1, 107–116. MR 1075604 | Zbl 0699.62038
[56] Tsybakov A.B.: Introduction à l'estimation non-paramétrique. Springer, Berlin, 2004. MR 2013911 | Zbl 1029.62034
[57] Vidakovic B.: Statistical Modeling by Wavelets. John Wiley & Sons, Inc., New York, 1999. MR 1681904 | Zbl 0924.62032
[58] White H., Domowitz, I.: Nonlinear regression with dependent observations. Econometrica 52 (1984), 143–162. DOI 10.2307/1911465 | MR 0729213
[59] Xue L.G.: Uniform convergence rates of the wavelet estimator of regression function under mixing error. Acta Math. Ser. A Chi. Ed. 22 (2002), 528–535. MR 1942715 | Zbl 1007.62039
[60] Yang S.C.: Maximal moment inequality for partial sums of strong mixing sequences and application. Acta. Math. Sin. (Engl. Ser.) 23 (2007), 1013–1024. DOI 10.1007/s10114-005-0841-9 | MR 2319611 | Zbl 1121.60017
[61] Zhang S., Zheng Z.: Nonlinear wavelet estimation of regression function with random design. Sci.China Ser. A 42 (1999), no. 8, 825–833. DOI 10.1007/BF02884269 | MR 1738553 | Zbl 0938.62046
[62] Zhou X.C., Lin J.G.: A wavelet estimator in a nonparametric regression model with repeated measurements under martingale difference errors structure. Statist. Probab. Lett. 82 (2012), no. 11, 1914–1922. DOI 10.1016/j.spl.2012.06.028 | MR 2970292
Partner of
EuDML logo