[1] Antoniadis A.:
Wavelets in statistics: a review (with discussion). J. Italian Statistical Society Series B 6 (1997), 97–144.
DOI 10.1007/BF03178905
[3] Antoniadis A., Bigot J., Sapatinas T.: Wavelet estimators in nonparametric regression: a comparative simulation study. J. Statist. Software 6 (2001), no. 6.
[4] Antoniadis A., Leporini D.. Pesquet J.-C.:
Wavelet thresholding for some classes of non-Gaussian noise. Statist. Neerlandica 56 (2002), no. 4, 434–453.
DOI 10.1111/1467-9574.00211 |
MR 2027535
[5] Baraud Y., Comte F., Viennet G.:
Adaptive estimation in autoregression or $\beta $-mixing regression via model selection. Ann. Statist. 29 (2001), no. 3, 839–875.
MR 1865343 |
Zbl 1012.62034
[6] Benatia F., Yahia D.:
Nonlinear wavelet regression function estimator for censored dependent data. J. Afr. Stat. 7 (2012), 391–411.
MR 3034386 |
Zbl 1258.62046
[8] Bochkina N., Sapatinas T.:
Minimax rates of convergence and optimality of Bayes factor wavelet regression estimators under pointwise risks. Statist. Sinica 19 (2009), 1389–1406.
MR 2589188 |
Zbl 1191.62069
[9] Bradley R.C.:
Introduction to Strong Mixing Conditions. Vol. 1, 2, 3, Kendrick Press, Heber City, UT, 2007.
MR 2325294 |
Zbl 1134.60004
[10] Cai T.:
Adaptive wavelet estimation: a block thresholding and oracle inequality approach. Ann. Statist. 27 (1999), 898–924.
MR 1724035 |
Zbl 0954.62047
[11] Cai, T.:
On block thresholding in wavelet regression: adaptivity, block size and threshold level. Statist. Sinica 12 (2002), 1241–1273.
MR 1947074 |
Zbl 1004.62036
[15] Chaubey Y.P., Shirazi E.: On MISE of a nonlinear wavelet estimator of the regression function based on biased data under strong mixing. Comm. Statist. Theory Methods(to appear).
[16] Chaubey Y.P., Chesneau C., Shirazi E.:
Wavelet-based estimation of regression function for dependent biased data under a given random design. J. Nonparametr. Stat. 25 (2013), no. 1, 53–71.
DOI 10.1080/10485252.2012.734619 |
MR 3039970
[18] Chesneau C.:
Adaptive wavelet regression in random design and general errors with weakly dependent data. Acta Univ. Apulensis Math. Inform 29 (2012), 65–84.
MR 3015056
[20] Chesneau C., Shirazi E.: Nonparametric wavelet regression based on biased data. Comm. Statist. Theory Methods(to appear).
[21] Chesneau C., Kachour M., Navarro F.:
A note on the adaptive estimation of a quadratic functional from dependent observations. IStatistik: Journal of the Turkish Statistical Association 6 (2013), no. 1, 10–26.
MR 3086320
[23] Cohen A., Daubechies I., Jawerth B., Vial P.:
Wavelets on the interval and fast wavelet transforms. Appl. Comput. Harmon. Anal. 24 (1993), no. 1, 54–81.
DOI 10.1006/acha.1993.1005 |
MR 1256527
[26] Delouille V., Franke J., von Sachs R.:
Nonparametric stochastic regression with design-adapted wavelets. Sankhya Ser. A 63 (2001), 328–366.
MR 1897046 |
Zbl 1192.62115
[31] Donoho D.L., Johnstone I.M., Kerkyacharian G., Picard D.:
Wavelet shrinkage: asymptopia? (with discussion). J. Royal Statist. Soc. Ser. B 57, 301–369.
MR 1323344
[32] Doosti H., Afshari M., Niroumand H.A.:
Wavelets for nonparametric stochastic regression with mixing stochastic process. Comm. Statist. Theory Methods 37 (2008), no. 3, 373–385.
DOI 10.1080/03610920701653003 |
MR 2432291
[33] Doosti H., Islam M.S., Chaubey Y.P., Gora P.:
Two dimensional wavelets for nonlinear autoregressive models with an application in dynamical system. Ital. J. Pure Appl. Math. 27 (2010), 39–62.
MR 2826252
[34] Doosti H., Niroumand H.A.:
Multivariate stochastic regression estimation by wavelets for stationary time series. Pakistan J. Statist. 25 (2009), no. 1, 37–46.
MR 2492520
[37] Härdle W.:
Applied Nonparametric Regression. Cambridge University Press, Cambridge, 1990.
MR 1161622 |
Zbl 0851.62028
[38] Härdle W., Kerkyacharian G., Picard D., Tsybakov A.:
Wavelet, approximation and statistical applications. Lectures Notes in Statistics, 129, Springer, New York, 1998.
DOI 10.1007/978-1-4612-2222-4 |
MR 1618204
[41] Kulik R., Raimondo M.:
Wavelet regression in random design with heteroscedastic dependent errors. Ann. Statist. 37 (2009), 3396–3430.
DOI 10.1214/09-AOS684 |
MR 2549564
[44] Li Y.M., Yin C.D., Wei G.D.:
On the asymptotic normality for mixing dependent errors of wavelet regression function estimator. Acta Mathematicae Applicatae Sinica 31 (2008), 1046–1055.
MR 2509883
[45] Li L., Xiao Y.:
Mean integrated squared error of nonlinear wavelet-based estimators with long memory data. Ann. Inst. Statist. Math. 59 (2007), 299–324.
DOI 10.1007/s10463-006-0048-6 |
MR 2394169
[46] Liebscher E.:
Estimation of the density and the regression function under mixing conditions. Statist. Decisions 19 (2001), no. 1, 9–26.
MR 1817218 |
Zbl 1179.62051
[47] Lütkepohl H.:
Multiple Time Series Analysis. Springer, Heidelberg, 1992.
Zbl 1141.62071
[48] Mallat S.:
A Wavelet Tour of Signal Processing. The Sparse Way. third edition, with contributions from Gabriel Peyré, Elsevier/Academic Press, Amsterdam, 2009.
MR 2479996 |
Zbl 1170.94003
[51] Neumann M.H., von Sachs R.:
Wavelet thresholding: beyond the Gaussian i.i.d. situation. in: Antoniadis A. and Oppenheim G. (eds.), Wavelets and Statistics (Villard de Lans, 1994), Lecture Notes in Statistics, 103, Springer, New York, 1995, pp. 301–330.
MR 1364677 |
Zbl 0831.62071
[53] Pensky M., Sapatinas T.:
Frequentist optimality of Bayes factor estimators in wavelet regression models. Statist. Sinica 17 (2007), 599–633.
MR 2408682 |
Zbl 1144.62004
[55] Roussas G.G.:
Nonparametric regression estimation under mixing conditions. Stochastic Process. Appl. 36 (1990), no. 1, 107–116.
MR 1075604 |
Zbl 0699.62038
[57] Vidakovic B.:
Statistical Modeling by Wavelets. John Wiley & Sons, Inc., New York, 1999.
MR 1681904 |
Zbl 0924.62032
[59] Xue L.G.:
Uniform convergence rates of the wavelet estimator of regression function under mixing error. Acta Math. Ser. A Chi. Ed. 22 (2002), 528–535.
MR 1942715 |
Zbl 1007.62039
[62] Zhou X.C., Lin J.G.:
A wavelet estimator in a nonparametric regression model with repeated measurements under martingale difference errors structure. Statist. Probab. Lett. 82 (2012), no. 11, 1914–1922.
DOI 10.1016/j.spl.2012.06.028 |
MR 2970292