Previous |  Up |  Next

Article

Keywords:
elliptic boundary value problems; positive solutions; variational methods; asymptotic behavior; combined nonlinearities
Summary:
Let $p>1$, $q>p$, $\lambda >0$ and $s\in ]1,p[$. We study, for $s\rightarrow p^-$, the behavior of positive solutions of the problem $-\Delta_p u = \lambda u^{s-1}+u^{q-1}$ in $\Omega$, $u_{\mid\partial \Omega}=0$. In particular, we give a positive answer to an open question formulated in a recent paper of the first author.
References:
[1] Anello G.: On the Dirichlet problem involving the equation $-\Delta_p u=\lambda u^{s-1}$. Nonlinear Anal. 70 (2009), 2060–2066. MR 2492142
[2] Anello G.: Asymptotic behavior of positive solutions of a Dirichlet problem involving combined nonlinearities. Monatsh. Math. 162 (2011), 1–18. DOI 10.1007/s00605-010-0189-9 | MR 2747340 | Zbl 1206.35135
[3] Boccardo L., Escobedo M., Peral I.: A Dirichlet problem involving critical exponent. Nonlinear Anal. 24 (1995), no. 11, 1639–1648. DOI 10.1016/0362-546X(94)E0054-K | MR 1328589
[4] Gedda M., Veron L.: Quasilinear elliptic equations involving critical Sobolev exponent. Nonlinear Anal. 13 (1989), no. 8, 879–902. DOI 10.1016/0362-546X(89)90020-5 | MR 1009077
[5] Il'yasov Y.: On nonlocal existence results for elliptic equations with convex concave nonlinearities. Nonlinear Anal. 61 (2005), 211–236. DOI 10.1016/j.na.2004.10.022 | MR 2122250 | Zbl 1190.35112
[6] Liebermann G.M.: Boundary regularity for solutions of degenerate elliptic equations. Nonlinear Anal. 12 (1988), no. 11, 1203–1219. DOI 10.1016/0362-546X(88)90053-3 | MR 0969499
[7] Moser J.: A new proof of De Giorgi's Theorem concerning the regularity problem for elliptic differential equations. Comm. Pure Appl. Math. 13 (1960), 457–478. DOI 10.1002/cpa.3160130308 | MR 0170091 | Zbl 0111.09301
Partner of
EuDML logo