Previous |  Up |  Next

Article

Keywords:
finite-time synchronization; cross-strict feedback hyperchaotic system; backstepping; adaptive control
Summary:
This paper is concerned with the finite-time synchronization problem for a class of cross-strict feedback underactuated hyperchaotic systems. Using finite-time control and backstepping control approaches, a new robust adaptive synchronization scheme is proposed to make the synchronization errors of the systems with parameter uncertainties zero in a finite time. Appropriate adaptive laws are derived to deal with the unknown parameters of the systems. The proposed method can be applied to a variety of chaotic systems which can be described by the so-called cross-strict feedback systems. Numerical simulations are given to demonstrate the efficiency of the proposed control scheme.
References:
[1] Aghababa, M. P., Khanmohammadi, S., Alizadeh, G.: Finite-time synchronization of two different chaotic systems with unknown parameters via sliding mode technique. Appl. Math. Modelling 35 (2011), 3080-3091. DOI 10.1016/j.apm.2010.12.020 | MR 2776263 | Zbl 1219.93023
[2] Boccaletti, S., Kurths, J., Osipov, G., Valladares, D. L., Zhou, C. S.: The synchronization of chaotic systems. Phys. Rep. 366 (2002), 1-101. DOI 10.1016/S0370-1573(02)00137-0 | MR 1913567 | Zbl 0995.37022
[3] Bowong, S., Kakmeni, F. M. M.: Synchronization of uncertain chaotic systems via backstepping approach. Chaos Solitons Fractals 21 (2004), 999-1011. DOI 10.1016/j.chaos.2003.12.084 | MR 2042817 | Zbl 1045.37011
[4] Chen, F. X., Wang, W., Chen, L., Zhang, W. D.: Adaptive chaos synchronization based on LMI technique. Phys. Scr. 75 (2007), 285-288. DOI 10.1088/0031-8949/75/3/010
[5] Chen, G.: Controlling Chaos and Bifurcations in Engineering Systems. CRC Press, Boca Raton 1999. MR 1756081 | Zbl 0929.00012
[6] Haeri, M., Emadzadeh, A. A.: Synchronizing different chaotic systems using active sliding mode control. Chaos Solitons Fractals 31 (2007), 119-129. DOI 10.1016/j.chaos.2005.09.037 | MR 2263270 | Zbl 1142.93394
[7] Han, J. Q., Wang, W.: Nonlinear tracking differentiator. System Sci. Math. 14 (1994), 177-183. Zbl 0830.93038
[8] Harb, A., Jabbar, N. A.: Controlling Hopf bifurcation and chaos in a small power system. Chaos Solitons Fractals 18 (2003), 1055-1063. DOI 10.1016/S0960-0779(03)00073-0 | Zbl 1074.93522
[9] Huang, C. F., Cheng, K. H., Yan, J. J.: Robust chaos synchronization of four-dimensional energy resource systems subject to unmatched uncertainties. Comm. Nonlinear Sci. Numer. Simul. 14 (2009), 2784-2792. DOI 10.1016/j.cnsns.2008.09.017
[10] Jia, Q.: Adaptive control and synchronization of a new hyperchaotic system with unknown parameters. Phys. Lett. A 362 (2007), 424-429. DOI 10.1016/j.physleta.2006.10.044 | Zbl 1197.34107
[11] Kittel, A., Parisi, J., Pyragas, K.: Delayed feedback control of chaos by self-adapted delay time. Phys. Lett. A 198 (1995), 433-436. DOI 10.1016/0375-9601(95)00094-J
[12] Krstic, M., Kanellakopoulos, I., Kokotovic, P.: Nonlinear and Adaptive Control Design. Wiley, New York 1995.
[13] Li, G. H., Zhou, S. P., Yang, K.: Generalized projective synchronization between two different chaotic systems using active backstepping control. Phys. Lett. A 355 (2006), 326-330. DOI 10.1016/j.physleta.2006.02.049
[14] Li, H. Y., Hu, Y. A.: Robust sliding-mode backstepping design for synchronization control of cross-strict feedback hyperchaotic systems with unmatched uncertainties. Comm. Nonlinear Sci. Numer. Simul. 16 (2011), 3904-3913. DOI 10.1016/j.cnsns.2011.02.031 | MR 2802696 | Zbl 1219.93026
[15] Li, H. Y., Hu, Y. A.: Backstepping-Based Synchronization Control of Cross-Strict Feedback Hyper-Chaotic Systems. Chinese Phys. Lett. 28 (2011), 120508.
[16] Lu, X. Q., Lu, R. Q., Chen, S. H., Lü, J. H.: Finite-time distributed tracking control for multi-agent systems with a virtual leader. IEEE Trans. Circuits Syst. I 60 (2013), 352-362. DOI 10.1109/TCSI.2012.2215786 | MR 3017545
[17] Ma, J., Zhang, A. H., Xia, Y. F., Zhang, L. P.: Optimize design of adaptive synchronization controllers and parameter observers in different hyperchaotic systems. Appl. Math. Comput. 215 (2010), 3318-3326. DOI 10.1016/j.amc.2009.10.020 | MR 2576820 | Zbl 1181.93032
[18] Park, J. H.: Synchronization of Genesio chaotic system via backstepping approach. Chaos Solitons Fractals 27 (2006), 1369-1375. DOI 10.1016/j.chaos.2005.05.001 | MR 2164861 | Zbl 1091.93028
[19] Pecora, L. M., Carroll, T. L.: Synchronization in chaotic systems. Phys. Rev. Lett. 64 (1990), 821-824. DOI 10.1103/PhysRevLett.64.821 | MR 1038263 | Zbl 1098.37553
[20] Pourmahmood, M., Khanmohammadi, S., Alizadeh, G.: Synchronization of two different uncertain chaotic systems with unknown parameters using a robust adaptive sliding mode controller. Comm. Nonlinear Sci. Numer. Simul. 16 (2011), 2853-2868. DOI 10.1016/j.cnsns.2010.09.038 | MR 2772300 | Zbl 1221.93131
[21] Roopaei, M., Sahraei, B. R., Lin, T. C.: Adaptive sliding mode control in a novel class of chaotic systems. Comm. Nonlinear Sci. Numer. Simul. 15 (2010), 4158-4170. DOI 10.1016/j.cnsns.2010.02.017 | MR 2652685 | Zbl 1222.93124
[22] Tan, X. H., Zhang, J. Y., Yang, Y. R.: Synchronizing chaotic systems using backstepping design. Chaos Solitons Fractals 16 (2003), 37-45. DOI 10.1016/S0960-0779(02)00153-4 | MR 1941155 | Zbl 1035.34025
[23] Wang, C., Ge, S. S.: Synchronization of two uncertain chaotic systems via adaptive backstepping. Internat. J. Bifur. Chaos 11 (2001), 1743-1751. DOI 10.1142/S0218127401002985
[24] Wang, F., Liu, C.: A new criterion for chaos and hyperchaos synchronization using linear feedback control. Phys. Lett. A 360 (2006), 274-278. DOI 10.1016/j.physleta.2006.08.037 | Zbl 1236.93131
[25] Wang, H., Han, Z. Z., Xie, Q. Y., Zhang, W.: Finite-time chaos control via nonsingular terminal sliding mode control. Comm. Nonlinear Sci. Numer. Simul. 14 (2009), 2728-2733. DOI 10.1016/j.cnsns.2008.08.013 | MR 2483882 | Zbl 1221.37225
[26] Wang, H., Han, Z. Z., Xie, Q. Y., Zhang, W.: Finite-time synchronization of uncertain unified chaotic systems based on CLF. Nonlinear Anal.: Real World Appl. 10 (2009), 2842-2849. MR 2523247 | Zbl 1183.34072
[27] Wang, H., Han, Z. Z., Xie, Q. Y., Zhang, W.: Finite-time chaos synchronization of unified chaotic system with uncertain parameters. Comm. Nonlinear Sci. Numer. Simul. 14 (2009), 2239-2247. DOI 10.1016/j.cnsns.2008.04.015
[28] Wang, J., Gao, J. F., Ma, X. K.: Synchronization control of cross-strict feedback hyperchaotic system based on cross active backstepping design. Phys. Lett. A 369 (2007), 452-457. DOI 10.1016/j.physleta.2007.05.038
[29] Wu, T., Chen, M. S.: Chaos control of the modified Chua's circuit system. Physica D 164 (2002), 53-58. DOI 10.1016/S0167-2789(02)00360-3 | MR 1910015 | Zbl 1008.37017
[30] Wu, X. Y., Zhang, H. M.: Synchronization of two hyperchaotic systems via adaptive control. Chaos Solitons Fractals 39 (2009), 2268-2273. DOI 10.1016/j.chaos.2007.06.100 | Zbl 1197.37046
[31] Xiang, W., Huangpu, Y. G.: Second-order terminal sliding mode controller for a class of chaotic systems with unmatched uncertainties. Comm. Nonlinear Sci. Numer. Simul. 15 (2010), 3241-3247. DOI 10.1016/j.cnsns.2009.12.012 | MR 2646151 | Zbl 1222.93045
[32] Yan, J. J., Hung, M. L., Chiang, T. Y., Yang, Y. S.: Robust synchronization of chaotic systems via adaptive sliding mode control. Phys. Lett. A 356 (2006), 220-225. DOI 10.1016/j.physleta.2006.03.047 | Zbl 1160.37352
[33] Yan, Z.: Controlling hyperchaos in the new hyperchaotic Chen system. Appl. Math. Comput. 168 (2005), 1239-1250. DOI 10.1016/j.amc.2004.10.016 | MR 2171776 | Zbl 1160.93384
[34] Yau, H. T.: Chaos synchronization of two uncertain chaotic nonlinear gyros using fuzzy sliding mode control. Mech. Syst. Signal Process 22 (2008), 408-418. DOI 10.1016/j.ymssp.2007.08.007
[35] Yu, S. M., Lü, J. H., Yu, X. H., Chen, G. R.: Design and implementation of grid multiwing hyperchaotic Lorenz system family via switching control and constructing super-heteroclinic loops. IEEE Trans. Circuits Syst. I 59 (2012), 1015-1028. DOI 10.1109/TCSI.2011.2180429 | MR 2924533
[36] Yu, W. G.: Finite-time stabilization of three-dimensional chaotic systems based on CLF. Phys. Lett. A 374 (2010), 3021-3024. DOI 10.1016/j.physleta.2010.05.040 | MR 2660601 | Zbl 1237.34093
[37] Yu, Y. G., Zhang, S. C.: Adaptive backstepping synchronization of uncertain chaotic system Chaos. Chaos Solitons Fractals 21 (2004), 643-649. DOI 10.1016/j.chaos.2003.12.067
[38] Zhang, H., Ma, X. K., Li, M., Zou, J. L.: Controlling and tracking hyperchaotic Rossler system via active backstepping design. Chaos Solitons Fractals 26 (2005), 353-361. DOI 10.1016/j.chaos.2004.12.032 | Zbl 1153.93381
[39] Zhou, X. B., Wu, Y., Li, Y., Xue, H. Q.: Adaptive control and synchronization of a new modified hyperchaotic Lu system with uncertain parameters chaos. Chaos Solitons Fractals 39 (2009), 2477-2483. DOI 10.1016/j.chaos.2007.07.017
[40] Zhu, C. X.: Adaptive synchronization of two novel different hyperchaotic systems with partly uncertain parameters. Appl. Math. Comput. 215 (2009), 557-561. DOI 10.1016/j.amc.2009.05.026 | MR 2561513 | Zbl 1182.37028
Partner of
EuDML logo