[1] Babenko, K. I., Vasil'ev, M. M.:
On the asymptotic behavior of a steady flow of viscous fluid at some distance from an immersed body. J. Appl. Math. Mech. 37 (1973), 651-665 translation from Prikl. Mat. Mekh. 37 690-705 (1973), Russian.
DOI 10.1016/0021-8928(73)90115-9 |
MR 0347214 |
Zbl 0295.76015
[3] Bae, H.-O., Roh, J.:
Stability for the 3D Navier-Stokes equations with nonzero far field velocity on exterior domains. J. Math. Fluid Mech. 14 (2012), 117-139.
DOI 10.1007/s00021-010-0040-z |
MR 2891194
[4] Deuring, P.:
Exterior stationary Navier-Stokes flows in 3D with nonzero velocity at infinity: asymptotic behaviour of the velocity and its gradient. IASME Trans. 2 (2005), 900-904.
MR 2215245
[5] Deuring, P.:
The single-layer potential associated with the time-dependent Oseen system. In: Proceedings of the 2006 IASME/WSEAS International Conference on Continuum Mechanics Chalkida, Greece, May 11-13 (2006), 117-125.
MR 2227964
[6] Deuring, P.:
On volume potentials related to the time-dependent Oseen system. WSEAS Trans. Math. 5 (2006), 252-259.
MR 2227964
[7] Deuring, P.:
On boundary-driven time-dependent Oseen flows. Rencławowicz, Joanna et al. Parabolic and Navier-Stokes Equations. Part 1. Polish Acad. Sci. Inst. Math., Banach Center Publications 81, Warsaw (2008), 119-132.
MR 2549327 |
Zbl 1148.76016
[8] Deuring, P.:
A potential theoretic approach to the time-dependent Oseen system. R. Rannacher, A. Sequeira Advances in Mathematical Fluid Mechanics Dedicated to Giovanni Paolo Galdi on the occasion of his 60th birthday. Selected papers of the international conference on mathematical fluid mechanics, Estoril, Portugal, May 21-25, 2007. Springer, Berlin (2010), 191-214.
MR 2665032
[10] Deuring, P.: A representation formula for the velocity part of 3D time-dependent Oseen flows. (to appear) in J. Math. Fluid Mech.
[11] Deuring, P.:
Pointwise spatial decay of time-dependent Oseen flows: the case of data with noncompact support. Discrete Contin. Dyn. Syst. Ser. A 33 (2013), 2757-2776.
DOI 10.3934/dcds.2013.33.2757 |
MR 3007725
[12] Deuring, P.:
Spatial decay of time-dependent incompressible Navier-Stokes flows with nonzero velocity at infinity. SIAM J. Math. Anal. 45 (2013), 1388-1421.
DOI 10.1137/120872255 |
MR 3056750
[13] Deuring, P., Kračmar, S.:
Exterior stationary Navier-Stokes flows in 3D with non-zero velocity at infinity: Approximation by flows in bounded domains. Math. Nachr. 269-270 (2004), 86-115.
MR 2074775 |
Zbl 1050.35067
[14] Enomoto, Y., Shibata, Y.:
Local energy decay of solutions to the Oseen equation in the exterior domains. Indiana Univ. Math. J. 53 (2004), 1291-1330.
MR 2104279 |
Zbl 1088.35048
[16] Farwig, R.:
The stationary exterior 3D-problem of Oseen and Navier-Stokes equations in anisotropically weighted Sobolev spaces. Math. Z. 211 (1992), 409-447.
DOI 10.1007/BF02571437 |
MR 1190220
[17] Friedman, A.:
Partial Differential Equations of Parabolic Type. Prentice-Hall, Englewood Cliffs N.J. (1964).
MR 0181836 |
Zbl 0144.34903
[18] Galdi, G. P.:
An Introduction to the Mathematical Theory of the Navier-Stokes Equations. Vol. II. Nonlinear Steady Problems. Springer Tracts in Natural Philosophy 39. Springer, New York (1994).
MR 1284206 |
Zbl 0949.35005
[21] Knightly, G. H.:
A Cauchy problem for the Navier-Stokes equations in $ \mathbb{R} ^n$. SIAM J. Math. Anal. 3 (1972), 506-511.
DOI 10.1137/0503048 |
MR 0312093
[22] Knightly, G. H.:
Some decay properties of solutions of the Navier-Stokes equations. R. Rautmann Approximation Methods for Navier-Stokes Problems Proc. Sympos., Univ. Paderborn 1979, Lecture Notes in Math. 771 287-289 Springer, Berlin (1980).
DOI 10.1007/BFb0086913 |
MR 0566003 |
Zbl 0458.35082
[30] Solonnikov, V. A.:
Estimates for solutions of nonstationary Navier-Stokes equations. Russian Boundary value problems of mathematical physics and related questions in the theory of functions 7. Zap. Naučn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 38 (1973), 153-231 English translation, J. Sov. Math. 8 (1977), 467-529.
MR 0415097 |
Zbl 0404.35081