Previous |  Up |  Next

Article

Keywords:
completely distributive lattice; continuous function; continuous lattice; Scott topology; subset system; $\mathcal Z$-continuous; $\mathcal Z$-distributive
Summary:
It is known that for a nonempty topological space $X$ and a nonsingleton complete lattice $Y$ endowed with the Scott topology, the partially ordered set $[X,Y]$ of all continuous functions from $X$ into $Y$ is a continuous lattice if and only if both $Y$ and the open set lattice $\mathcal O X$ are continuous lattices. This result extends to certain classes of $\mathcal Z$-distributive lattices, where $\mathcal Z$ is a subset system replacing the system $\mathcal D$ of all directed subsets (for which the $\mathcal D$-distributive complete lattices are just the continuous ones). In particular, it is shown that if $[X,Y]$ is a complete lattice then it is supercontinuous (i.e.\^^Mcompletely distributive) iff both $Y$ and $\mathcal O X$ are supercontinuous. Moreover, the Scott topology on $Y$ is the only one making that equivalence true for all spaces $X$ with completely distributive topology. On the way to these results, we find necessary and sufficient conditions for $[X,Y]$ to be complete, and some new, purely topological characterizations of continuous lattices by continuity conditions on their (infinitary) lattice operations.
References:
[1] Bandelt, H.-J., Erné, M.: The category of Z-continuous posets. J. Pure Appl. Algebra 30 (1983), 219-226. DOI 10.1016/0022-4049(83)90057-9 | MR 0724033 | Zbl 0523.06001
[2] Bandelt, H.-J., Erné, M.: Representations and embeddings of $M$-distributive lattices. Houston J. Math. 10 (1984), 315-324. MR 0763234 | Zbl 0551.06014
[3] Baranga, A.: Z-continuous posets. Discrete Math. 152 (1996), 33-45. DOI 10.1016/0012-365X(94)00307-5 | MR 1388630 | Zbl 0851.06003
[4] Baranga, A.: Z-continuous posets, topological aspects. Stud. Cercet. Mat. 49 (1997), 3-16. MR 1671509 | Zbl 0883.06007
[5] Erné, M.: Scott convergence and Scott topology on partially ordered sets II. Continuous Lattices. Proc. Conf., Bremen 1979 Lect. Notes Math. 871 61-96 (1981), B. Banaschewski, R.-E. Hoffmann Springer, Berlin. DOI 10.1007/BFb0089904
[6] Erné, M.: Adjunctions and standard constructions for partially ordered sets. Contributions to General Algebra. Proc. Klagenfurt Conf. 1982 Contrib. Gen. Algebra 2 Hölder, Wien 77-106 (1983), G. Eigenthaler et al. Contributions to General Algebra. MR 0721648 | Zbl 0533.06001
[7] Erné, M.: The ABC of order and topology. Category Theory at Work. Proc. Workshop, Bremen 1991 Res. Expo. Math. 18 57-83 (1991), H. Herrlich, H.-E. Porst Heldermann, Berlin. MR 1147919 | Zbl 0735.18005
[8] Erné, M.: Algebraic ordered sets and their generalizations. I. Rosenberg Algebras and Orders. Kluwer Academic Publishers. NATO ASI Ser. C, Math. Phys. Sci. 389 Kluwer Acad. Publ., Dordrecht 113-192 (1993). MR 1233790 | Zbl 0791.06007
[9] Erné, M.: Z-continuous posets and their topological manifestation. Appl. Categ. Struct. 7 (1999), 31-70. DOI 10.1023/A:1008657800278 | MR 1714179 | Zbl 0939.06005
[10] Erné, M.: Minimal bases, ideal extensions, and basic dualities. Topol. Proc. 29 (2005), 445-489. MR 2244484 | Zbl 1128.06001
[11] Erné, M.: Closure. F. Mynard, E. Pearl Beyond Topology. AMS Contemporary Mathematics 486 Providence, R.I. (2009), 163-238. MR 2555999 | Zbl 1209.08001
[12] Erné, M.: Infinite distributive laws versus local connectedness and compactness properties. Topology Appl. 156 (2009), 2054-2069. DOI 10.1016/j.topol.2009.03.029 | MR 2532134 | Zbl 1190.54022
[13] Erné, M., Gatzke, H.: Convergence and continuity in partially ordered sets and semilattices. Continuous Lattices and Their Applications. Proc. 3rd Conf., Bremen 1982 Lect. Notes Pure Appl. Math. 101 9-40 (1985). MR 0825993 | Zbl 0591.54029
[14] Gierz, G., Hofmann, K. H., Keimel, K., Lawson, J. D., Mislove, M., Scott, D. S.: A Compendium of Continuous Lattices. Springer, Berlin (1980). MR 0614752 | Zbl 0452.06001
[15] Gierz, G., Hofmann, K. H., Keimel, K., Lawson, J. D., Mislove, M., Scott, D. S.: Continuous Lattices and Domains. Encyclopedia of Mathematics and Its Applications 93 Cambridge University Press, Cambridge (2003). MR 1975381 | Zbl 1088.06001
[16] Hoffmann, R.-E.: Continuous posets, prime spectra of completely distributive complete lattices, and Hausdorff compactifications. Continuous Lattices. Proc. Conf., Bremen 1979 Lect. Notes Math. 871 159-208 (1981), B. Banaschewski, R.-E. Hoffmann Springer, Berlin. DOI 10.1007/BFb0089907 | Zbl 0476.06005
[17] Isbell, J.: Completion of a construction of Johnstone. Proc. Am. Math. Soc. 85 (1982), 333-334. DOI 10.1090/S0002-9939-1982-0656096-4 | MR 0656096 | Zbl 0492.06006
[18] Keimel, K.: Bicontinuous domains and some old problems in domain theory. Electronical Notes in Th. Computer Sci. 257 (2009), 35-54. DOI 10.1016/j.entcs.2009.11.025
[19] Kříž, I., Pultr, A.: A spatiality criterion and an example of a quasitopology which is not a topology. Houston J. Math. 15 (1989), 215-234. MR 1022063 | Zbl 0695.54002
[20] Meseguer, J.: Order completion monads. Algebra Univers. 16 (1983), 63-82. MR 0690831 | Zbl 0522.18005
[21] Novak, D.: Generalization of continuous posets. Trans. Am. Math. Soc. 272 (1982), 645-667. DOI 10.1090/S0002-9947-1982-0662058-8 | MR 0662058 | Zbl 0504.06003
[22] Qin, F.: Function space of Z-continuous lattices. Fuzzy Syst. Math. 14 (2000), 31-35 Chinese. MR 1802864
[23] Raney, G. N.: A subdirect-union representation for completely distributive complete lattices. Proc. Am. Math. Soc. 4 (1953), 518-522. DOI 10.1090/S0002-9939-1953-0058568-4 | MR 0058568 | Zbl 0053.35201
[24] Scott, D. S.: Continuous lattices. Toposes, Algebraic Geometry and Logic. Dalhousie Univ. Halifax 1971, Lect. Notes Math. 274 97-136 (1972), Springer, Berlin. MR 0404073 | Zbl 0239.54006
[25] Venugopalan, G.: Z-continuous posets. Houston J. Math. 12 (1986), 275-294. MR 0862043 | Zbl 0614.06007
[26] Wright, J. B., Wagner, E. G., Thatcher, J. W.: A uniform approach to inductive posets and inductive closure. Theor. Comput. Sci. 7 (1978), 57-77. DOI 10.1016/0304-3975(78)90040-3 | MR 0480224 | Zbl 0732.06001
[27] Wyler, O.: Dedekind complete posets and Scott topologies. B. Banaschewski, R.-E. Hoffmann Continuous Lattices. Proc. Conf., Bremen 1979, Lect. Notes Math. 871 384-389 (1981), Springer, Berlin. DOI 10.1007/BFb0089920 | Zbl 0488.54018
Partner of
EuDML logo