[2] Bandelt, H.-J., Erné, M.:
Representations and embeddings of $M$-distributive lattices. Houston J. Math. 10 (1984), 315-324.
MR 0763234 |
Zbl 0551.06014
[4] Baranga, A.:
Z-continuous posets, topological aspects. Stud. Cercet. Mat. 49 (1997), 3-16.
MR 1671509 |
Zbl 0883.06007
[5] Erné, M.:
Scott convergence and Scott topology on partially ordered sets II. Continuous Lattices. Proc. Conf., Bremen 1979 Lect. Notes Math. 871 61-96 (1981), B. Banaschewski, R.-E. Hoffmann Springer, Berlin.
DOI 10.1007/BFb0089904
[6] Erné, M.:
Adjunctions and standard constructions for partially ordered sets. Contributions to General Algebra. Proc. Klagenfurt Conf. 1982 Contrib. Gen. Algebra 2 Hölder, Wien 77-106 (1983), G. Eigenthaler et al. Contributions to General Algebra.
MR 0721648 |
Zbl 0533.06001
[7] Erné, M.:
The ABC of order and topology. Category Theory at Work. Proc. Workshop, Bremen 1991 Res. Expo. Math. 18 57-83 (1991), H. Herrlich, H.-E. Porst Heldermann, Berlin.
MR 1147919 |
Zbl 0735.18005
[8] Erné, M.:
Algebraic ordered sets and their generalizations. I. Rosenberg Algebras and Orders. Kluwer Academic Publishers. NATO ASI Ser. C, Math. Phys. Sci. 389 Kluwer Acad. Publ., Dordrecht 113-192 (1993).
MR 1233790 |
Zbl 0791.06007
[10] Erné, M.:
Minimal bases, ideal extensions, and basic dualities. Topol. Proc. 29 (2005), 445-489.
MR 2244484 |
Zbl 1128.06001
[11] Erné, M.:
Closure. F. Mynard, E. Pearl Beyond Topology. AMS Contemporary Mathematics 486 Providence, R.I. (2009), 163-238.
MR 2555999 |
Zbl 1209.08001
[13] Erné, M., Gatzke, H.:
Convergence and continuity in partially ordered sets and semilattices. Continuous Lattices and Their Applications. Proc. 3rd Conf., Bremen 1982 Lect. Notes Pure Appl. Math. 101 9-40 (1985).
MR 0825993 |
Zbl 0591.54029
[14] Gierz, G., Hofmann, K. H., Keimel, K., Lawson, J. D., Mislove, M., Scott, D. S.:
A Compendium of Continuous Lattices. Springer, Berlin (1980).
MR 0614752 |
Zbl 0452.06001
[15] Gierz, G., Hofmann, K. H., Keimel, K., Lawson, J. D., Mislove, M., Scott, D. S.:
Continuous Lattices and Domains. Encyclopedia of Mathematics and Its Applications 93 Cambridge University Press, Cambridge (2003).
MR 1975381 |
Zbl 1088.06001
[16] Hoffmann, R.-E.:
Continuous posets, prime spectra of completely distributive complete lattices, and Hausdorff compactifications. Continuous Lattices. Proc. Conf., Bremen 1979 Lect. Notes Math. 871 159-208 (1981), B. Banaschewski, R.-E. Hoffmann Springer, Berlin.
DOI 10.1007/BFb0089907 |
Zbl 0476.06005
[18] Keimel, K.:
Bicontinuous domains and some old problems in domain theory. Electronical Notes in Th. Computer Sci. 257 (2009), 35-54.
DOI 10.1016/j.entcs.2009.11.025
[19] Kříž, I., Pultr, A.:
A spatiality criterion and an example of a quasitopology which is not a topology. Houston J. Math. 15 (1989), 215-234.
MR 1022063 |
Zbl 0695.54002
[22] Qin, F.:
Function space of Z-continuous lattices. Fuzzy Syst. Math. 14 (2000), 31-35 Chinese.
MR 1802864
[24] Scott, D. S.:
Continuous lattices. Toposes, Algebraic Geometry and Logic. Dalhousie Univ. Halifax 1971, Lect. Notes Math. 274 97-136 (1972), Springer, Berlin.
MR 0404073 |
Zbl 0239.54006
[27] Wyler, O.:
Dedekind complete posets and Scott topologies. B. Banaschewski, R.-E. Hoffmann Continuous Lattices. Proc. Conf., Bremen 1979, Lect. Notes Math. 871 384-389 (1981), Springer, Berlin.
DOI 10.1007/BFb0089920 |
Zbl 0488.54018