Previous |  Up |  Next

Article

Keywords:
fixed point; common fixed point; 2-metric space; completeness
Summary:
In the present paper, we establish a common fixed point theorem for four self-mappings of a complete 2-metric space using the weak commutativity condition and $A$-contraction type condition and then extend the theorem for a class of mappings.
References:
[1] Akram, M., Zafar, A. A., Siddiqui A. A.: A general class of contractions: $A$-contractions. Novi Sad J. Math. 38, 1 (2008), 25–33. MR 2498688 | Zbl 1274.54092
[2] Bianchini, R.: Su un problema di S.Reich riguardante la teori dei punti fissi. Boll. Un. Math. Ital. 5 (1972), 103–108. MR 0308875
[3] Cho, Y. J., Khan, M. S., Singh, S. L.: Common fixed points of weakly commuting mappings. Univ. u Novom Sadu, Zb. Rad. Prirod.–Mat. Fak. Ser. Mat. 18, 1 (1988), 129–142. MR 1034710 | Zbl 0708.54037
[4] Delbosco, D.: An unified approach for the contractive mappings. Jnanabha 16 (1986), 1–11. MR 0882131
[5] Fisher, B.: Common fixed points of four mappings. Bull. Inst. Math. Acad. Sinicia 11 (1983), 103–113. MR 0718906 | Zbl 0515.54029
[6] Gähler, S.: 2-metric Raume and ihre topologische strucktur. Math.Nachr. 26 (1963), 115–148. DOI 10.1002/mana.19630260109 | MR 0162224
[7] Gähler, S: Uber die unifromisieberkeit 2-metrischer Raume. Math. Nachr. 28 (1965), 235–244. DOI 10.1002/mana.19640280309
[8] Kannan, R.: Some results on fixed points–II. Amer. Math. Monthly 76, 4 (1969), 405–408. DOI 10.2307/2316437 | MR 0257838 | Zbl 0179.28203
[9] Khan, M. D.: A Study of Fixed Point Theorems. Doctoral Thesis, Aligarh Muslim University, Aligarh, Uttar Pradesh, India, 1984.
[10] Naidu, S. V. R., Prasad, J. R.: Fixed points in 2- metric spaces. Indian J. Pure AppL. Math. 1, 8 (1986), 974–993.
[11] Reich, S.: Kannan’s fixed point theorem. Boll. Un. Math. Ital. 4 (1971), 1–11. MR 0305163 | Zbl 0219.54042
Partner of
EuDML logo