[1] Artacho, F. J. A. Aragón, Goeffroy, M. H.:
Characterization of metric regularity of subdifferentials. J. Convex Anal. 15 (2008), 365-380.
MR 2422996
[2] Bonnans, F. J., Shapiro, A.:
Perturbation Analysis of Optimization Problems. Springer, New York 2000.
MR 1756264 |
Zbl 0966.49001
[4] Dontchev, A. L., Rockafellar, R. T.:
Characterizations of Lipschitzian stability in nonlinear programming. In: Mathematical Programming with Data Perturbations (A. V. Fiacco, ed.), Marcel Dekker, New York 1997, pp. 65-82.
MR 1472266 |
Zbl 0891.90146
[5] Dontchev, A. L., Rockafellar, R. T.:
Implicit Functions and Solution Mappings. A View from Variational Analysis. Springer, Dordrecht 2009.
MR 2515104 |
Zbl 1178.26001
[6] Drusvyatskiy, D., Lewis, A. S.:
Tilt stability, uniform quadratic growth, and strong metric regularity of the subdifferential. SIAM J. Optim. 23 (2013), 256-267.
DOI 10.1137/120876551 |
MR 3033107
[7] Facchinei, F., Pang, J.-S.:
Finite-Dimensional Variational Inequalities and Complementarity Problems. Springer, New York 2003.
Zbl 1062.90002
[8] Henrion, R., Mordukhovich, B. S., Nam, N. M.:
Second-order analysis of polyhedral systems in finite and infinite dimensions with applications to robust stability of variational inequalities. SIAM J. Optim. 20 (2010), 2199-2227.
DOI 10.1137/090766413 |
MR 2650845 |
Zbl 1208.49010
[9] Henrion, R., Outrata, J. V., Surowiec, T.:
On the coderivative of normal cone mappings to inequality systems. Nonlinear Anal. 71 (2009), 1213-1226.
DOI 10.1016/j.na.2008.11.089 |
MR 2527541
[10] Henrion, R., Outrata, J. V., Surowiec, T.:
On regular coderivatives in parametric equalibria with non-unique multipliers. Math. Programming Ser. B 136 (2012), 111-131.
DOI 10.1007/s10107-012-0553-8 |
MR 3000584
[11] Henrion, R., Kruger, A. Y., Outrata, J. V.: Some remarks on stability of generalized equations. J. Optim. Theory Appl., DOI 10.1007 s 10957-012-0147-x.
[12] Izmailov, A. F., Kurennoy, A. S., Solodov, M. V.: A note on upper Lipschitz stability, error bounds, and critical multipliers for Lipschitz continuous KKT systems. Math. Programming, DOI 10.1007/s 10107-012-0586-z.
[13] Janin, R.:
Directional derivative of marginal function in nonlinear programming. Math. Programming Stud. 21 (1984), 110-126.
DOI 10.1007/BFb0121214 |
MR 0751246
[14] Klatte, D.:
On the stability of local and global solutions in parametric problems of nonlinear programming. Part I: Basic results. Seminarbericht 75 der Sektion Mathematik der Humboldt-Universitat zu Berlin 1985, pp. 1-21,
MR 0861527
[15] Klatte, D., Kummer, B.:
Nonsmooth Equations in Optimization. Regularity, Calculus, Methods and Applications. Kluwer, Boston 2002.
MR 1909427 |
Zbl 1173.49300
[16] Kojima, M.:
Strongly stable stationary solutions in nonlinear programs. In: Analysis and Computation of Fixed Points (S. M. Robinson, ed.), Academic Press, New York 1980, pp. 93-138.
MR 0592631 |
Zbl 0478.90062
[18] Lewis, A. S., Zhang, S.:
Partial smoothness, tilt stability, and generalized Hessians. SIAM J. Optim. 23 (2013), 74-94.
DOI 10.1137/110852103 |
MR 3033099
[21] Mordukhovich, B. S.:
Sensitivity analysis in nonsmooth optimization. In: Theoretical Aspects of Industrial Design (D. A. Field and V. Komkov, eds.), SIAM Proc. Appl. Math. 58 (1992), pp. 32-46. Philadelphia.
MR 1157413 |
Zbl 0769.90075
[22] Mordukhovich, B. S.:
Variational Analysis and Generalized Differentiation. I: Basic Theory, II: Applications. Springer, Berlin 2006.
MR 2191744 |
Zbl 1100.49002
[24] Mordukhovich, B. S., Outrata, J. V.:
Coderivative analysis of quasi-variational inequalities with applications to stability and optimization. SIAM J. Optim. 18 (2007), 389-412.
DOI 10.1137/060665609 |
MR 2338444 |
Zbl 1145.49012