Previous |  Up |  Next

Article

Keywords:
hypersurface with constant mean curvature; the stability operator; Hodge Laplacian; rough Laplacian
Summary:
For compact hypersurfaces with constant mean curvature in the unit sphere, we give a comparison theorem between eigenvalues of the stability operator and that of the Hodge Laplacian on 1-forms. Furthermore, we also establish a comparison theorem between eigenvalues of the stability operator and that of the rough Laplacian.
References:
[1] Alencar, H., Carmo, M. do, Colares, A. G.: Stable hypersurfaces with constant scalar curvature. Math. Z., 213, 1993, 117-131, DOI 10.1007/BF03025712 | MR 1217674 | Zbl 0792.53057
[2] Barbosa, J. L., Carmo, M. do, Eschenburg, M.: Stability of hypersurfaces with constant mean curvature in Riemannian manifolds. Math. Z., 197, 1988, 123-138, DOI 10.1007/BF01161634 | MR 0917854
[3] Cao, L., Li, H.: $r$-Minimal submanifolds in space forms. Ann. Global Anal. Geom., 32, 2007, 311-341, DOI 10.1007/s10455-007-9064-x | MR 2346221 | Zbl 1168.53029
[4] Cheng, Q.-M.: First eigenvalue of a Jacobi operator of hypersurfaces with constant scalar curvature. Proc. Amer. Math. Soc., 136, 2008, 3309-3318, DOI 10.1090/S0002-9939-08-09304-0 | MR 2407097
[5] Chern, S. S.: Minimal Submanifolds in a Riemannian Manifold (mimeographed). 1968, University of Kansas, Lawrence, MR 0248648
[6] Soufi, A. El, Ilias, S.: Second eigenvalue of Schrödinger operators, mean curvature. Commun. Math. Phys., 208, 2000, 761-770, DOI 10.1007/s002200050009 | MR 1736334
[7] Li, H.: Hypersurfaces with constant scalar curvature in space forms. Math. Ann., 305, 1996, 665-672, DOI 10.1007/BF01444243 | MR 1399710 | Zbl 0864.53040
[8] Li, H., Wang, X.: Second eigenvalue of a Jacobi operator of hypersurfaces with constant scalar curvature. Proc. Amer. Math. Soc., 140, 2012, 291-307, DOI 10.1090/S0002-9939-2011-10892-X | MR 2833541 | Zbl 1252.53071
[9] Savo, A.: Index bounds for minimal hypersurfaces of the sphere. Indiana Univ. Math. J., 59, 2010, 823-837, DOI 10.1512/iumj.2010.59.4013 | MR 2779062 | Zbl 1209.53052
[10] Simons, J.: Minimal varieties in Riemannian manifolds. Ann. of Math., 88, 2, 1968, 62-105, DOI 10.2307/1970556 | MR 0233295 | Zbl 0181.49702
[11] Wu, C.: New characterization of the Clifford tori, the Veronese surface. Arch. Math. (Basel), 61, 1993, 277-284, DOI 10.1007/BF01198725 | MR 1231163
Partner of
EuDML logo