Previous |  Up |  Next

Article

Keywords:
Lotka-Volterra derivation; polynomial constant; polynomial first integral; Darboux polynomial
Summary:
We show that the rings of constants of generic four-variable Lotka-Volterra derivations are finitely generated polynomial rings. We explicitly determine these rings, and we give a description of all polynomial first integrals of their corresponding systems of differential equations. Besides, we characterize cofactors of Darboux polynomials of arbitrary four-variable Lotka-Volterra systems. These cofactors are linear forms with coefficients in the set of nonnegative integers. Lotka-Volterra systems have various applications in such branches of science as population biology and plasma physics, among many others.
References:
[1] Bogoyavlenskij, O. I.: Algebraic constructions of integrable dynamical systems: extension of the Volterra system. Russ. Math. Surv. 46 (1991), 1-64 translation from Usp. Mat. Nauk 46 (1991), 3-48 Russian. MR 1134089
[2] Jędrzejewicz, P.: Positive characteristic analogs of closed polynomials. Cent. Eur. J. Math. 9 (2011), 50-56. DOI 10.2478/s11533-010-0091-7 | MR 2753881 | Zbl 1211.12005
[3] Kuroda, S.: Fields defined by locally nilpotent derivations and monomials. J. Algebra 293 (2005), 395-406. DOI 10.1016/j.jalgebra.2005.06.011 | MR 2172346 | Zbl 1131.13022
[4] Ollagnier, J. Moulin: Polynomial first integrals of the Lotka-Volterra system. Bull. Sci. Math. 121 (1997), 463-476. MR 1477795
[5] Moulin-Ollagnier, J., Nowicki, A.: Polynomial algebra of constants of the Lotka-Volterra system. Colloq. Math. 81 (1999), 263-270. DOI 10.4064/cm-81-2-263-270 | MR 1715350 | Zbl 1004.12004
[6] Nowicki, A.: Polynomial Derivations and Their Rings of Constants. Uniwersytet Mikołaja Kopernika, Toruń (1994). MR 2553232 | Zbl 1236.13023
[7] Nowicki, A., Nagata, M.: Rings of constants for $k$-derivations in $k[x_1,\ldots,x_n]$. J. Math. Kyoto Univ. 28 (1988), 111-118. DOI 10.1215/kjm/1250520561 | MR 0929212
[8] Nowicki, A., Zieliński, J.: Rational constants of monomial derivations. J. Algebra 302 (2006), 387-418. DOI 10.1016/j.jalgebra.2006.02.034 | MR 2236608 | Zbl 1119.13021
[9] Ossowski, P., Zieliński, J.: Polynomial algebra of constants of the four variable Lotka-Volterra system. Colloq. Math. 120 (2010), 299-309. DOI 10.4064/cm120-2-9 | MR 2672276 | Zbl 1207.13016
[10] Zieliński, J.: Factorizable derivations and ideals of relations. Commun. Algebra 35 (2007), 983-997. DOI 10.1080/00927870601117639 | MR 2305245 | Zbl 1171.13013
[11] Zieliński, J.: The five-variable Volterra system. Cent. Eur. J. Math. 9 (2011), 888-896. DOI 10.2478/s11533-011-0032-0 | MR 2805320 | Zbl 1236.13024
Partner of
EuDML logo