Previous |  Up |  Next

Article

Keywords:
annular domain; Poisson kernel; Hardy-Sobolev space; logarithmic estimate; Robin parameter
Summary:
The main purpose of this work is to establish some logarithmic estimates of optimal type in the Hardy-Sobolev space $H^{k,\infty }$; $k \in {\mathbb {N}}^*$ of an annular domain. These results are considered as a continuation of a previous study in the setting of the unit disk by L. Baratchart and M. Zerner, On the recovery of functions from pointwise boundary values in a Hardy-Sobolev class of the disk, J. Comput. Appl. Math. 46 (1993), 255–269 and by S. Chaabane and I. Feki, Optimal logarithmic estimates in Hardy-Sobolev spaces $H^{k,\infty }$, C. R., Math., Acad. Sci. Paris 347 (2009), 1001–1006. As an application, we prove a logarithmic stability result for the inverse problem of identifying a Robin parameter on a part of the boundary of an annular domain starting from its behavior on the complementary boundary part.
References:
[1] Alessandrini, G., Piere, L. Del, Rondi, L.: Stable determination of corrosion by a single electrostatic boundary measurement. Inverse Probl. 19 (2003), 973-984. MR 2005313
[2] Baratchard, L., Zerner, M.: On the recovery of functions from pointwise boundary values in a Hardy-Sobolev class of the disk. J. Comput. Appl. Math. 46 (1993), 255-269. DOI 10.1016/0377-0427(93)90300-Z | MR 1222486 | Zbl 0818.65017
[3] Baratchart, L., Leblond, J., Partington, J. R.: Hardy approximation to $L^\infty$ functions on subsets of the circle. Constructive Approximation 12 (1996), 423-435. MR 1405007
[4] Brézis, H.: Analyse fonctionnelle. Théorie et applications. Masson Paris (1983), French. MR 0697382
[5] Chaabane, S., Feki, I.: Optimal logarithmic estimates in Hardy-Sobolev spaces $H^{k,\infty}$. C. R., Math., Acad. Sci. Paris 347 (2009), 1001-1006. DOI 10.1016/j.crma.2009.07.018 | MR 2554565
[6] Chaabane, S., Jaoua, M.: Identification of Robin coefficients by the means of boundary measurements. Inverse Probl. 15 (1999), 1425-1438. MR 1733209 | Zbl 0943.35100
[7] Chaabane, S., Fellah, I., Jaoua, M., Leblond, J.: Logarithmic stability estimates for a Robin coefficient in two-dimensional Laplace inverse problems. Inverse Probl. 20 (2004), 47-59. MR 2044605 | Zbl 1055.35135
[8] Chaabane, S., Jaoua, M., Leblond, J.: Parameter identification for Laplace equation and approximation in Hardy classes. J. Inverse Ill-Posed Probl. 11 (2003), 33-57. DOI 10.1515/156939403322004928 | MR 1972169 | Zbl 1028.35163
[9] Chaabane, S., Ferchichi, J., Kunisch, K.: Differentiability properties of the $L^{1}$-tracking functional and application to the Robin inverse problem. Inverse Probl. 20 (2004), 1083-1097. MR 2087981
[10] Chalendar, I., Partington, J. R.: Approximation problems and representations of Hardy spaces in circular domains. Stud. Math. 136 (1999), 255-269. MR 1724247 | Zbl 0952.30033
[11] Chevreau, B., Pearcy, C. M., Shields, A. L.: Finitely connected domains $G$, representations of $H^{\infty}(G)$, and invariant subspaces. J. Oper. Theory 6 (1981), 375-405. MR 0643698
[12] Duren, P. L.: Theory of $H^p$ Spaces. Academic Press New York (1970). MR 0268655
[13] Gaier, D., Pommerenke, C.: On the boundary behavior of conformal maps. Mich. Math. J. 14 (1967), 79-82. DOI 10.1307/mmj/1028999660 | MR 0204631 | Zbl 0182.10204
[14] Leblond, J., Mahjoub, M., Partington, J. R.: Analytic extensions and Cauchy-type inverse problems on annular domains: stability results. J. Inverse Ill-Posed Probl. 14 (2006), 189-204. DOI 10.1515/156939406777571049 | MR 2242304 | Zbl 1111.35121
[15] Meftahi, H., Wielonsky, F.: Growth estimates in the Hardy-Sobolev space of an annular domain with applications. J. Math. Anal. Appl. 358 (2009), 98-109. DOI 10.1016/j.jmaa.2009.04.040 | MR 2527584 | Zbl 1176.46029
[16] Nirenberg, L.: An extended interpolation inequality. Ann. Sc. Norm. Super. Pisa, Sci. Fis. Mat., III. Ser. 20 (1966), 733-737. MR 0208360 | Zbl 0163.29905
[17] Rudin, W.: Analytic functions of class $H^p$. Trans. Am. Math. Soc. 78 (1955), 46-66. MR 0067993
[18] Sarason, D.: The $H^p$ Spaces of An Annulus. Mem. Am. Math. Soc. 56 (1965), Providence, RI. MR 0188824
[19] Wang, H.-C.: Real Hardy spaces of an annulus. Bull. Austral. Math. Soc. 27 (1983), 91-105. DOI 10.1017/S0004972700011515 | MR 0696647 | Zbl 0512.42023
Partner of
EuDML logo