Previous |  Up |  Next

Article

Keywords:
Boolean matrix; Boolean rank; Boolean linear operator
Summary:
The Boolean rank of a nonzero $m\times n$ Boolean matrix $A$ is the minimum number $k$ such that there exist an $m\times k$ Boolean matrix $B$ and a $k\times n$ Boolean matrix $C$ such that $A=BC$. In the previous research L. B. Beasley and N. J. Pullman obtained that a linear operator preserves Boolean rank if and only if it preserves Boolean ranks $1$ and $2$. In this paper we extend this characterizations of linear operators that preserve the Boolean ranks of Boolean matrices. That is, we obtain that a linear operator preserves Boolean rank if and only if it preserves Boolean ranks $1$ and $k$ for some $1<k\leq m$.
References:
[1] Beasley, L. B., Li, C.-K., Pierce, S.: Miscellaneous preserver problems. Linear Multilinear Algebra 33 (1992), 109-119. DOI 10.1080/03081089208818185 | MR 1346786 | Zbl 0767.15006
[2] Beasley, L. B., Pullman, N. J.: Boolean-rank-preserving operators and Boolean-rank-1 spaces. Linear Algebra Appl. 59 (1984), 55-77. DOI 10.1016/0024-3795(84)90158-7 | MR 0743045 | Zbl 0536.20044
[3] Kang, K.-T., Song, S.-Z., Heo, S.-H., Jun, Y.-B.: Linear preserves of regular matrices over general Boolean algebras. Bull. Malays. Math. Sci. Soc. 34 (2011), 113-125. MR 2783783
[4] Kim, K. H.: Boolean Matrix Theory and Applications. Pure and Applied Mathematics 70 Marcel Dekker, New York (1982). MR 0655414 | Zbl 0495.15003
[5] Song, S.-Z.: Linear operators that preserve column rank of Boolean matrices. Proc. Am. Math. Soc. 119 (1993), 1085-1088. DOI 10.1090/S0002-9939-1993-1184086-1 | MR 1184086 | Zbl 0802.15006
Partner of
EuDML logo