[2] Chandrasekharan, K., Minakshisundaram, S.:
Typical Means. (Tata Institute of Fundamental Research. Monographs on mathematics and physics 1) Oxford University Press (1952).
MR 0055458 |
Zbl 0047.29901
[6] Estrada, R., Kanwal, R. P.:
A Distributional Approach to Asymptotics. Theory and Applications. 2nd revised and expanded edition. Birkhäuser, Boston (2002).
MR 1882228 |
Zbl 1033.46031
[9] Hardy, G. H.:
Divergent Series. At the Clarendon Press (Geoffrey Cumberlege) Oxford (1949).
MR 0030620 |
Zbl 0032.05801
[10] Hardy, G. H., Littlewood, J. E.:
Contributions to the arithmetic theory of series. Proc. London Math. Soc. 11 (1913), 411-478.
MR 1577235
[11] Hardy, G. H., Littlewood, J. E.:
Tauberian theorems concerning power series and Dirichlet's series whose coefficients are positive. Proc. London Math. Soc. 13 (1914), 174-191.
MR 1577498
[13] Ingham, A. E.:
The equivalence theorem for Cesàro and Riesz summability. Publ. Ramanujan Inst. 1 (1968), 107-113.
MR 0283455
[15] Littlewood, J. E.:
The converse of Abel's theorem on power series. Proc. London Math. Soc. 9 (1911), 434-448.
MR 1577317
[16] Pati, T.: On Tauberian theorems. Sequences, Summability and Fourier analysis Narosa Publishing House (2005), 234-251.
[20] Pilipović, S., Stanković, B., Vindas, J.:
Asymptotic Behavior of Generalized Functions. Series on Analysis, Applications and Computations 5. World Scientific Hackensack, NJ (2012).
MR 2895276
[21] Schwartz, L.:
Théorie des Distributions. Nouvelle Édition, Entiérement Corrigée, Refondue et Augmentée. Publications de l'Institut de Mathématique de l'Université de Strasbourg Hermann, Paris (1966), French.
MR 0209834 |
Zbl 0149.09501
[27] Vladimirov, V. S.:
Methods of The Theory of Generalized Functions. Analytical Methods and Special Functions 6 Taylor & Francis, London (2002).
MR 2012831 |
Zbl 1078.46029
[28] Vladimirov, V. S., Drozzinov, J. N., Zav'jalov, B. I.:
Tauberian Theorems for Generalized Functions. Mathematics and Its Applications (Soviet Series), 10 Kluwer Academic Publishers, Dordrecht (1988).
MR 0947960