Previous |  Up |  Next

Article

Keywords:
P-ideal; nowhere dense set; extension; analytic ideal; maximal ideal; meager ideal; ideal convergence
Summary:
We show that the ideal of nowhere dense subsets of rationals cannot be extended to an analytic P-ideal, $F_\sigma$ ideal nor maximal P-ideal. We also consider a problem of extendability to a non-meager P-ideals (in particular, to maximal P-ideals).
References:
[1] Debs G., Saint Raymond J.: Filter descriptive classes of Borel functions. Fund. Math. 204 (2009), no. 3, 189–213. DOI 10.4064/fm204-3-1 | MR 2520152 | Zbl 1179.03046
[2] Dow A.: The space of minimal prime ideals of $C(\beta N-{\bf N})$ is probably not basically disconnected. General Topology and Applications (Middletown, CT, 1988), Lecture Notes in Pure and Appl. Math., 123, Dekker, New York, 1990, pp. 81–86. MR 1057626
[3] Filipów R., Mrożek N., Recław I., Szuca P.: Ideal convergence of bounded sequences. J. Symbolic Logic 72 (2007), no. 2, 501–512. DOI 10.2178/jsl/1185803621 | MR 2320288 | Zbl 1123.40002
[4] Jalali-Naini S.M.: The monotone subsets of Cantor space, filters and descriptive set theory. PhD Thesis, Oxford, 1976.
[5] Laczkovich M., Recław I.: Ideal limits of sequences of continuous functions. Fund. Math. 203 (2009), no. 1, 39–46. DOI 10.4064/fm203-1-3 | MR 2491780 | Zbl 1172.03025
[6] Laflamme C.: Filter games and combinatorial properties of strategies. Set theory (Boise, ID, 1992–1994), Contemp. Math., 192, Amer. Math. Soc., Providence, RI, 1996, pp. 51–67. MR 1367134 | Zbl 0854.04004
[7] Solecki S.: Analytic ideals and their applications. Ann. Pure Appl. Logic 99 (1999), no. 1-3, 51–72. DOI 10.1016/S0168-0072(98)00051-7 | MR 1708146 | Zbl 0932.03060
[8] Talagrand M.: Compacts de fonctions mesurables et filtres non mesurables. Studia Math. 67 (1980), no. 1, 13–43. MR 0579439 | Zbl 0435.46023
[9] van Mill J., Reed G.M. (eds.): Open Problems in Topology. North-Holland Publishing Co., Amsterdam, 1990. MR 1078636 | Zbl 0877.54001
[10] Zapletal J.: Preserving $P$-points in definable forcing. Fund. Math. 204 (2009), no. 2, 145–154. DOI 10.4064/fm204-2-4 | MR 2520149 | Zbl 1174.03022
Partner of
EuDML logo