Previous |  Up |  Next

Article

Keywords:
Dunkl-Hermite functions; Dunkl-Hermite semigroup; Dunkl-Hermite-Sobolev space
Summary:
We propose the study of some questions related to the Dunkl-Hermite semigroup. Essentially, we characterize the images of the Dunkl-Hermite-Sobolev space, $\mathcal{S}(\mathbb{R})$ and $L^p_\alpha(\mathbb{R})$, $1<p<\infty$, under the Dunkl-Hermite semigroup. Also, we consider the image of the space of tempered distributions and we give Paley-Wiener type theorems for the transforms given by the Dunkl-Hermite semigroup.
References:
[1] Ben Salem N., Nefzi W.: Inversion of the Dunkl-Hermite semigroup. Bull. Malays. Math. Sci. Soc. (2) 35 (2012), no. 2, 287–301. MR 2893456
[2] Ben Salem N., Samaali T.: Hilbert transforms associated with Dunkl-Hermite polynomials. SIGMA Symmetry Integrability Geom. Methods Appl. 5 (2009), Paper 037. MR 2506175 | Zbl 1162.42002
[3] Dunkl C.F.: Integral kernels with reflection group invariance. Canad. J. Math. 43 (1991), 1213–1227. DOI 10.4153/CJM-1991-069-8 | MR 1145585 | Zbl 0827.33010
[4] Erdely A. et al.: Higher Transcendental Functions, vol 2. McGraw-Hill, New-York, 1953.
[5] de Jeu M.F.E.: The Dunkl transform. Invent. Math. 113 (1993), 147–162. DOI 10.1007/BF01244305 | MR 1223227 | Zbl 1116.33016
[6] Lebedev N.N.: Special Functions and their Applications. translated by R.A. Silverman, Dover, New York, 1972. MR 0350075 | Zbl 0271.33001
[7] Maalaoui R., Trimèche K.: A family of generalized windowed transforms associated with the Dunkl operators on $\mathbb{R}^d$. Integral Transforms Spec. Funct. 23 (2012), no. 3, 191–206. DOI 10.1080/10652469.2011.577427 | MR 2891463
[8] Radha R., Thangavelu S.: Holomorphic Sobolev spaces, Hermite and special Hermite semigroups and a Paley-Wiener theorem for the windowed Fourier transform. J. Math. Anal. Appl. 354 (2009), 564–574. DOI 10.1016/j.jmaa.2009.01.021 | MR 2515237 | Zbl 1168.43005
[9] Radha R., Venku Naidu D.: Image of $L^p(\mathbb R^n)$ under the Hermite semigroup. Int. J. Math. Math. Sci. (2008), Art. ID 287218, 13 pages. MR 2482046
[10] Rosenblum M.: Generalized Hermite polynomials and the Bose-like oscillator calculus. in Operator theory: Advances and Applications, Vol. 73, Birkhäuser, Basel, 1994, pp. 369–396. MR 1320555
[11] Rösler M.: Generalized Hermite polynomials and the heat equation for Dunkl operators. Comm. Math. Phys. 192 (1998), no. 3, 519–542. DOI 10.1007/s002200050307 | MR 1620515
[12] Rösler M., Voit M.: Markov Processes related with Dunkl operators. Adv. Appl. Math. 21 (1998), 575–643. DOI 10.1006/aama.1998.0609 | MR 1652182 | Zbl 0919.60072
[13] Trimèche K.: Paley-Wiener theorems for the Dunkl transform and Dunkl translation operators. Integral Transforms Spec. Funct. 13 (2002), 17–38. DOI 10.1080/10652460212888 | MR 1914125 | Zbl 1030.44004
[14] Trimèche K.: Hypoelliptic Dunkl convolution equations in the space of distributions on $\mathbb{R}^d$. J. Fourier Anal. Appl. 12 (2006), 517–542. DOI 10.1007/s00041-005-5073-y | MR 2267633
Partner of
EuDML logo