[1] Ben Salem N., Nefzi W.:
Inversion of the Dunkl-Hermite semigroup. Bull. Malays. Math. Sci. Soc. (2) 35 (2012), no. 2, 287–301.
MR 2893456
[2] Ben Salem N., Samaali T.:
Hilbert transforms associated with Dunkl-Hermite polynomials. SIGMA Symmetry Integrability Geom. Methods Appl. 5 (2009), Paper 037.
MR 2506175 |
Zbl 1162.42002
[4] Erdely A. et al.: Higher Transcendental Functions, vol 2. McGraw-Hill, New-York, 1953.
[6] Lebedev N.N.:
Special Functions and their Applications. translated by R.A. Silverman, Dover, New York, 1972.
MR 0350075 |
Zbl 0271.33001
[7] Maalaoui R., Trimèche K.:
A family of generalized windowed transforms associated with the Dunkl operators on $\mathbb{R}^d$. Integral Transforms Spec. Funct. 23 (2012), no. 3, 191–206.
DOI 10.1080/10652469.2011.577427 |
MR 2891463
[9] Radha R., Venku Naidu D.:
Image of $L^p(\mathbb R^n)$ under the Hermite semigroup. Int. J. Math. Math. Sci. (2008), Art. ID 287218, 13 pages.
MR 2482046
[10] Rosenblum M.:
Generalized Hermite polynomials and the Bose-like oscillator calculus. in Operator theory: Advances and Applications, Vol. 73, Birkhäuser, Basel, 1994, pp. 369–396.
MR 1320555
[11] Rösler M.:
Generalized Hermite polynomials and the heat equation for Dunkl operators. Comm. Math. Phys. 192 (1998), no. 3, 519–542.
DOI 10.1007/s002200050307 |
MR 1620515