Article
Keywords:
compact spaces; $G_\delta $-sets; resolvability
Summary:
It is well-known that compacta (i.e. compact Hausdorff spaces) are maximally resolvable, that is every compactum $X$ contains $\Delta(X)$ many pairwise disjoint dense subsets, where $\Delta(X)$ denotes the minimum size of a non-empty open set in $X$. The aim of this note is to prove the following analogous result: Every compactum $X$ contains $\Delta_\delta(X)$ many pairwise disjoint $G_\delta$-dense subsets, where $\Delta_\delta(X)$ denotes the minimum size of a non-empty $G_\delta$ set in $X$.
References:
[1] Čech E., Pospíšil B.:
Sur les espaces compacts. Publ. Fac. Sci. Univ. Masaryk 258 (1938), 1–14.
Zbl 0019.08903
[3] El'kin A.G.:
Resolvable spaces which are not maximally resolvable. Vestnik Moskov. Univ. Ser. I Mat. Meh. 24 (1969), no. 4, 66–70.
MR 0256331 |
Zbl 0243.54018
[4] Juhász I.: Cardinal functions in topology – 10 years later. Mathematical Centre Tracts, 123, Mathematisch Centrum, Amsterdam, 1980.
[5] Juhász I.:
On the minimum character of points in compact spaces. in: Proc. Top. Conf. (Pécs, 1989), 365–371, Colloq. Math. Soc. János Bolyai, 55, North-Holland, Amsterdam, 1993.
MR 1244377 |
Zbl 0798.54005