Previous |  Up |  Next

Article

Keywords:
compact group; precompact group; representation; Pontryagin--van Kampen duality; compact-open topology; Fell dual space; Fell topology; Kazhdan property (T)
Summary:
For any topological group $G$ the dual object $\widehat G$ is defined as the set of equivalence classes of irreducible unitary representations of $G$ equipped with the Fell topology. If $G$ is compact, $\widehat G$ is discrete. In an earlier paper we proved that $\widehat G$ is discrete for every metrizable precompact group, i.e. a dense subgroup of a compact metrizable group. We generalize this result to the case when $G$ is an almost metrizable precompact group.
References:
[1] Arhangel'skii A., Tkachenko M.: Topological Groups and Related Structures. Atlantis Press, Amsterdam-Paris, 2008. MR 2433295
[2] Aussenhofer L.: Contributions to the duality theory of Abelian topological groups and to the theory of nuclear groups. Dissertation, Tübingen 1998; Dissertationes Math. (Rozprawy Mat.) 384 (1999). MR 1736984 | Zbl 0953.22001
[3] Bekka B., de la Harpe P., Valette A.: Kazhdan's Property $(T)$. Cambridge University Press, Cambridge, 2008.
[4] Chasco M.J.: Pontryagin duality for metrizable groups. Arch. Math. 70 (1998), 22–28. DOI 10.1007/s000130050160 | MR 1487450 | Zbl 0899.22001
[5] Comfort W.W., Raczkowski S.U., Trigos-Arrieta F.J.: The dual group of a dense subgroup. Czechoslovak Math. J. 54 (129) (2004), 509–533. DOI 10.1023/B:CMAJ.0000042588.07352.99 | MR 2059270 | Zbl 1080.22500
[6] Dikranjan D., Shakhmatov D.: Quasi-convex density and determining subgroups of compact Abelian groups. J. Math. Anal. Appl. 363 (2010), no. 1, 42–48. DOI 10.1016/j.jmaa.2009.07.038 | MR 2559039 | Zbl 1178.22005
[7] Dixmier J.: Les C$^\ast$-algèbres et leurs représentations. Gauthier-Villars, Paris, 1969. MR 0246136 | Zbl 0288.46055
[8] Engelking R.: General Topology. revised and completed edition, Heldermann Verlag, Berlin, 1989. MR 1039321 | Zbl 0684.54001
[9] Fell J.M.G.: The dual spaces of $C^\ast$-algebras. Trans. Amer. Math. Soc. 94 (1960), 365–403. MR 0146681 | Zbl 0090.32803
[10] Fell J.M.G.: Weak containment and induced representations of groups. Canad. J. Math. 14 (1962), 237–268. DOI 10.4153/CJM-1962-016-6 | MR 0150241 | Zbl 0195.42201
[11] Ferrer M.V., Hernández S.: Dual topologies on groups. Topology Appl.(to appear). MR 2921826
[12] Ferrer M.V., Hernández S., Uspenskij V.: Precompact groups and property $(T)$. arXiv:1112.1350. MR 3045168
[13] de la Harpe P., Valette A.: La propriété $(T)$ de Kazhdan pour les groupes localement compacts. Astérisque 175, Soc. Math. France, 1989. Zbl 0759.22001
[14] Hernández S., Macario S., Trigos-Arrieta F.J.: Uncountable products of determined groups need not be determined. J. Math. Anal. Appl. 348 (2008), no. 2, 834–842. DOI 10.1016/j.jmaa.2008.07.065 | MR 2446038 | Zbl 1156.22002
[15] Hofmann K.H., Morris S.A.: The Structure of Compact Groups: A Primer for Students - a Handbook for the Expert. De Gruyter Studies in Mathematics, 25, Walter de Gruyter, Berlin-New York, 2006. MR 2261490
Partner of
EuDML logo