Previous |  Up |  Next

Article

Keywords:
pseudocompact topological group; extremal topological group; proper dense pseudocompact subgroup; abelian
Summary:
The authors have shown [Proc. Amer. Math. Soc. 135 (2007), 4039--4044] that every nonmetrizable, pseudocompact abelian group has both a proper dense pseudocompact subgroup and a strictly finer pseudocompact group topology. Here they give a comprehensive, direct and self-contained proof of this result.
References:
[1] Arhangel'skii A., Tkachenko M.: Topological Groups and Related Structures. Atlantis Studies in Mathematics, 1, Atlantis Press, Paris and World Scientific Publ. Co., Hackensack, New Jersey, 2008. MR 2433295
[2] Comfort W.W.: Topological groups. in: Handbook of Set-theoretic Topology (Kenneth Kunen and Jerry E. Vaughan, eds.), pp. 1143–1263, North-Holland, Amsterdam, 1984. MR 0776643 | Zbl 1071.54019
[3] Comfort W.W.: Tampering with pseudocompact groups. Topology Proc. 28 (2004), 401–424. MR 2159734 | Zbl 1085.54028
[4] Comfort W.W.: Pseudocompact groups: progress and problems. Topology Appl. 155 (2008), 172–179. DOI 10.1016/j.topol.2007.09.004 | MR 2380255 | Zbl 1132.54020
[5] Comfort W.W., Jorge Galindo J.: Extremal pseudocompact topological groups. J. Pure Appl. Algebra 197 (2005), 59–81. DOI 10.1016/j.jpaa.2004.08.018 | MR 2123980
[6] Comfort W.W., Remus D.: Pseudocompact refinements of compact group topologies. Math. Z. 215 (1994), 337–346. DOI 10.1007/BF02571718 | MR 1262521 | Zbl 0790.54051
[7] Comfort W.W., Gladdines H., van Mill J.: Proper pseudocompact subgroups of pseudocompact Abelian groups. in: Papers on General Topology and Applications, Annals of the New York Academy of Sciences 728 (1994), 237–247. [Note: This is Proc. June, 1992 Queens College Summer Conference on General Topology and Applications (Susan Andima, Gerald Itzkowitz, T. Yung Kong, Ralph Kopperman, Prabud Ram Misra, Lawrence Narici, and Aaron Todd, eds.).]. MR 1467777 | Zbl 0915.54029
[8] Comfort W.W., van Mill J.: Concerning connected, pseudocompact Abelian groups. Topology Appl. 33 (1989), 21–45. DOI 10.1016/0166-8641(89)90086-2 | MR 1020981 | Zbl 0698.54003
[9] Comfort W.W., van Mill J.: Extremal pseudocompact abelian groups are compact metrizable. Proc. Amer. Math. Soc. 135 (2007), 4039–4044. DOI 10.1090/S0002-9939-07-08952-6 | MR 2341956 | Zbl 1138.22002
[10] Comfort W.W., Robertson L.C.: Proper pseudocompact extensions of compact Abelian group topologies. Proc. Amer. Math. Soc 86 (1982), 173–178. DOI 10.1090/S0002-9939-1982-0663891-4 | MR 0663891 | Zbl 0508.22002
[11] Comfort W.W., Robertson L.C.: Cardinality constraints for pseudocompact and for totally dense subgroups of compact Abelian groups. Pacific J. Math. 119 (1985), 265–285. DOI 10.2140/pjm.1985.119.265 | MR 0803119
[12] Comfort W.W., Robertson L.C.: Extremal phenomena in certain classes of totally bounded groups. Dissertationes Math. 272 (1988), 48 pages; Rozprawy Mat. Polish Scientific Publishers, Warszawa, 1988. MR 0959432 | Zbl 0703.22002
[13] Comfort W.W., Ross K.A.: Pseudocompactness and uniform continuity in topological groups. Pacific J. Math. 16 (1966), 483–496. DOI 10.2140/pjm.1966.16.483 | MR 0207886 | Zbl 0214.28502
[14] Comfort W.W., Soundararajan T.: Pseudocompact group topologies and totally dense subgroups. Pacific J. Math. 100 (1982), 61–84. DOI 10.2140/pjm.1982.100.61 | MR 0661441 | Zbl 0451.22002
[15] Dikranjan D.N., Shakhmatov D.B.: Products of minimal abelian groups. Math. Z. 204 (1990), 583–603. DOI 10.1007/BF02570894 | MR 1062137 | Zbl 0685.22001
[16] Dikranjan D.N., Shakhmatov D.B.: Algebraic structure of the pseudocompact groups. 1991, Report 91–19, pp. 1–37; York University, Ontario, Canada.
[17] Dikranjan D., Giordano Bruno A., Milan C.: Weakly metrizable pseudocompact groups. Appl. Gen. Topol. 7 (2006), 1–39. DOI 10.4995/agt.2006.1930 | MR 2284933 | Zbl 1127.22003
[18] van Douwen E.K.: The weight of a pseudocompact (homogeneous) space whose cardinality has countable cofinality. Proc. Amer. Math. Soc. 80 (1980), 678–682. DOI 10.1090/S0002-9939-1980-0587954-5 | MR 0587954 | Zbl 0446.54011
[19] Engelking R.: General Topology. Heldermann Verlag, Berlin, 1989. MR 1039321 | Zbl 0684.54001
[20] Fuchs L.: Infinite Abelian Groups. Vol. I. Academic Press, New York, 1970. MR 0255673 | Zbl 0338.20063
[21] Galindo J.: Dense pseudocompact subgroups and finer pseudocompact group topologies. Scientiae Math. Japonicae 55 (2002), 627–640. MR 1901051 | Zbl 1011.54032
[22] Glicksberg I.: The representation of functionals by integrals. Duke Math. J. 19 (1952), 253–261. DOI 10.1215/S0012-7094-52-01926-1 | MR 0050168 | Zbl 0048.09004
[23] Halmos P.R.: Naive Set Theory. Springer-Verlag, New York–Heidelberg–Berlin, 1960. MR 0114756 | Zbl 0287.04001
[24] Hewitt E.: Rings of real-valued continuous functions I. Trans. Amer. Math. Soc. 64 (1948), 45–99. DOI 10.1090/S0002-9947-1948-0026239-9 | MR 0026239 | Zbl 0032.28603
[25] Hewitt E., Ross K.A.: Abstract Harmonic Analysis, vol. I. Springer Verlag, Berlin-Göttingen-Heidelberg, 1963. MR 0551496 | Zbl 0115.10603
[26] Hewitt E., Ross K.A.: Abstract Harmonic Analysis, vol. II. Die Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen, 152, Springer-Verlag, Berlin-Heidelberg-New York, 1970. MR 0551496 | Zbl 0830.43001
[27] Kakutani S., Kodaira K.: Über das Haarsche Mass in der lokal bikompacten Gruppen. Proc. Imperial Acad. Tokyo 20 (1944), 444–450, reprinted in: Selected papers of Shizuo Kakutani volume 1, edited by Robert R. Kallman, pp. 68–74, Birkhäuser, Boston-Basel-Stuttgart, 1986. MR 0014401
[28] Mycielski J.: Some properties of connected compact groups. Colloq. Math. 5 (1958), 162–166. MR 0100043 | Zbl 0088.02802
[29] Ross K.A., Stromberg K.R.: Baire sets and Baire measures. Arkiv för Matematik 6 (1967), 151–160. DOI 10.1007/BF02591355 | MR 0196029 | Zbl 0147.04501
[30] de Vries J.: Pseudocompactness and the Stone-Čech compactification for topological groups. Nieuw Archief voor Wiskunde (3) 23 (1975), 35–48. MR 0401978 | Zbl 0296.22003
[31] Weil A.: Sur les Espaces à Structure Uniforme et sur la Topologie Générale. Publ. Math. Univ. Strasbourg, vol. 551, Hermann & Cie, Paris, 1938. Zbl 0019.18604
Partner of
EuDML logo