Previous |  Up |  Next

Article

Keywords:
universal nowhere dense subset; Sierpiński carpet; Menger cube; Hilbert cube manifold; $n$-manifold; tame ball; tame decomposition
Summary:
In each manifold $M$ modeled on a finite or infinite dimensional cube $[0,1]^n$, $n\leq \omega $, we construct a meager $F_\sigma$-subset $X\subset M$ which is universal meager in the sense that for each meager subset $A\subset M$ there is a homeomorphism $h:M\to M$ such that $h(A)\subset X$. We also prove that any two universal meager $F_\sigma$-sets in $M$ are ambiently homeomorphic.
References:
[1] Anderson R.D.: On sigma-compact subsets of infinite-dimensional manifolds. unpublished manuscript.
[2] Banakh T., Morayne M., Rałowski R., Żeberski S.: Topologically invariant $\sigma$-ideals on the Hilbert cube. preprint ( http://arxiv.org/abs/1302.5658)
[3] Banakh T., Repovš D.: Universal nowhere dense subsets of locally compact manifolds. preprint ( http://arxiv.org/abs/1302.5651)
[4] Bessaga C., Pelczyński A.: Selected topics in infinite-dimensional topology. PWN, Warsaw, 1975. MR 0478168 | Zbl 0304.57001
[5] Cannon J.W.: A positional characterization of the $(n-1)$-dimensional Sierpinski curve in $S^n$ $(n\ne 4)$. Fund. Math. 79 (1973), no. 2, 107–112. MR 0319203
[6] Chapman T.A.: Dense sigma-compact subsets of infinite-dimensional manifolds. Trans. Amer. Math. Soc. 154 (1971), 399–426. DOI 10.1090/S0002-9947-1971-0283828-7 | MR 0283828 | Zbl 0208.51903
[7] Chapman T.A.: Lectures on Hilbert Cube Manifolds. American Mathematical Society, Providence, R.I., 1976. MR 0423357 | Zbl 0528.57002
[8] Chigogidze A.: Inverse Spectra. North-Holland Publishing Co., Amsterdam, 1996. MR 1406565 | Zbl 0934.54001
[9] Engelking R.: General Topology. Heldermann Verlag, Berlin, 1989. MR 1039321 | Zbl 0684.54001
[10] Engelking R.: Theory of dimensions finite and infinite. Heldermann Verlag, Lemgo, 1995. MR 1363947 | Zbl 0872.54002
[11] Geoghegan R., Summerhill R.: Infinite-dimensional methods in finite-dimensional geometric topology. Bull. Amer. Math. Soc. 78 (1972), 1009–1014. DOI 10.1090/S0002-9904-1972-13086-6 | MR 0312501 | Zbl 0256.57004
[12] Geoghegan R., Summerhill R.: Pseudo-boundaries and pseudo-interiors in Euclidean spaces and topological manifolds. Trans. Amer. Math. Soc. 194 (1974), 141–165. DOI 10.1090/S0002-9947-1974-0356061-0 | MR 0356061 | Zbl 0288.57001
[13] Menger K.: Allgemeine Raume und Cartesische Raume Zweite Mitteilung: “Uber umfassendste $n$-dimensional Mengen". Proc. Akad. Amsterdam 29 (1926), 1125–1128.
[14] Sierpiński W.: Sur une courbe cantorienne qui contient une image biunivoque et continue de toute courbe donnée. C.R. Acad. Sci., Paris, 162 (1916), 629–632.
[15] Štanko M.A.: The embedding of compact into Euclidean space. Math USSR Sbornik 12 (1970), 234–254. DOI 10.1070/SM1970v012n02ABEH000919
[16] West J.: The ambient homeomorphy of an incomplete subspace of infinite-dimensional Hilbert spaces. Pacific J. Math. 34 (1970), 257–267. DOI 10.2140/pjm.1970.34.257 | MR 0277011 | Zbl 0198.46001
[17] Whyburn G.: Topological characterization of the Sierpinski curve. Fund. Math. 45 (1958), 320–324. MR 0099638 | Zbl 0081.16904
Partner of
EuDML logo