[1] Anderson R.D.: On sigma-compact subsets of infinite-dimensional manifolds. unpublished manuscript.
[2] Banakh T., Morayne M., Rałowski R., Żeberski S.:
Topologically invariant $\sigma$-ideals on the Hilbert cube. preprint (
http://arxiv.org/abs/1302.5658)
[4] Bessaga C., Pelczyński A.:
Selected topics in infinite-dimensional topology. PWN, Warsaw, 1975.
MR 0478168 |
Zbl 0304.57001
[5] Cannon J.W.:
A positional characterization of the $(n-1)$-dimensional Sierpinski curve in $S^n$ $(n\ne 4)$. Fund. Math. 79 (1973), no. 2, 107–112.
MR 0319203
[7] Chapman T.A.:
Lectures on Hilbert Cube Manifolds. American Mathematical Society, Providence, R.I., 1976.
MR 0423357 |
Zbl 0528.57002
[10] Engelking R.:
Theory of dimensions finite and infinite. Heldermann Verlag, Lemgo, 1995.
MR 1363947 |
Zbl 0872.54002
[13] Menger K.: Allgemeine Raume und Cartesische Raume Zweite Mitteilung: “Uber umfassendste $n$-dimensional Mengen". Proc. Akad. Amsterdam 29 (1926), 1125–1128.
[14] Sierpiński W.: Sur une courbe cantorienne qui contient une image biunivoque et continue de toute courbe donnée. C.R. Acad. Sci., Paris, 162 (1916), 629–632.
[17] Whyburn G.:
Topological characterization of the Sierpinski curve. Fund. Math. 45 (1958), 320–324.
MR 0099638 |
Zbl 0081.16904