[3] Birge, J. R., Chen, X., Qi, L.: Newton Method for Stochastic Quadratic Programs with Recourse. AMR, School of Mathematics, UNSW, Sydney 1994.
[4] Birge, J. R., Louveaux, F.:
Introduction to stochastic programming. Springer Series in Operation Research, Springer-Verlag, New York 1997.
MR 1460264 |
Zbl 1223.90001
[5] Branda, M.:
Chance constrained problems: penalty reformulation and performance of sample approximation technique. Kybernetika 48 (2012), 105-122.
MR 2932930 |
Zbl 1243.93117
[6] Chen, X.:
A parallel BFGS-SQP method for stochastic linear programs. In: Computational Techniques and Applications, World Scientific 1995, pp. 67-74.
MR 1664847 |
Zbl 0909.65034
[15] Evtushenko, Yu. G., Golikov, A. I., Mollaverdi, N.:
Augmented lagrangian method for large-scale linear programming problem. Optim. Method. Softw. 20 (2005), 515-524.
DOI 10.1080/10556780500139690 |
MR 2179569
[17] Hiriart-Urruty, J.-B., Strodiot, J. J., Nguyen, V. H.:
Generalized Hessian matrics and second-order optimality condisions for problems CL1 data. Appl. Math. Optim. 11 (1984), 43-56.
DOI 10.1007/BF01442169 |
MR 0726975
[25] Prekopa, A.:
Probabilistic programming. In: Stochastic programming (A. Ruszczynski and A. Shapiro, eds.), Handbook in Operations Research and Management Science 10 (2003), pp. 267-352, Elsevier, Amsterdam.
MR 2052757 |
Zbl 1042.90597
[27] Tarim, S. A., Miguel, I.:
A hybrid Bender's decomposition method for solving stochastic constraint programs with linear recourse. Lect. Notes Comput. Sci. 3978 (2006), 133-148.
DOI 10.1007/11754602_10
[28] Slyke, R. M. Van, Wets, R.:
$L-$shaped linear programs with applications to optimal control and stochastic programming. SIAM J. Appl. Math. 17 (1969), 638-663.
DOI 10.1137/0117061 |
MR 0253741