[1] Amari, S.: Information geometry on hierarchical decomposition of stochastic interactions. IEEE Trans. Inform. Theory 47 (1999), 1701-1711.
[2] Amari, S., Nagaoka, H.:
Methods of information geometry, Vol. 191. Oxford University Press, 2000. Translations of mathematical monographs.
MR 1800071
[4] Ay, N., Montúfar, G. F., Rauh, J.: Selection criteria for neuromanifolds of stochastic dynamics. In: Advances in Cognitive Neurodynamics (III). Springer, 2011.
[5] Bishop, C. M.:
Pattern Recognition and Machine Learning (Information Science and Statistics). Springer-Verlag, New York 2006.
MR 2247587
[6] Bocci, C., Chiantini, L.: On the identifiability of binary segre products. J. Algebraic Geom. 5 (2011).
[7] Brown, L.:
Fundamentals of Statistical Exponential Families: With Applications in Statistical Decision Theory. Institute of Mathematical Statistics, Hayworth 1986.
MR 0882001 |
Zbl 0685.62002
[8] Catalisano, M. V., Geramita, A. V., Gimigliano, A.:
Secant varieties of $\P^1\times\dots\times\P^1$ ($n$-times) are not defective for $n\geq5$. J. Algebraic Geom. 20 (2011), 295-327.
DOI 10.1090/S1056-3911-10-00537-0 |
MR 2762993
[11] Cohen, S. L. G., Honkala, I., Lobstein, A.:
Covering Codes. Elsevier, 1997.
Zbl 0874.94001
[12] Gale, D.:
Neighborly and cyclic polytopes. In: Convexity: Proc. Seventh Symposium in Pure Mathematics of the American Mathematical Society 1961, pp. 225-233.
MR 0152944 |
Zbl 0137.41801
[13] Gawrilow, E., Joswig, M.:
Polymake: a framework for analyzing convex polytopes. In: Polytopes - Combinatorics and Computation (G. Kalai and G. M. Ziegler, eds.), Birkhäuser 2000, pp. 43-74.
MR 1785292 |
Zbl 0960.68182
[15] Gilbert, E.: A comparison of signalling alphabets. Bell System Techn. J. 31 (1052), 504-522.
[17] Grünbaum, B.:
Convex Polytopes. Second edition. Springer-Verlag, New York 2003.
MR 1976856
[18] Henk, M., Richter-Gebert, J., Ziegler, G. M.:
Basic Properties of Convex Polytopes. CRC Press, Boca Raton 1997.
MR 1730169 |
Zbl 0911.52007
[20] Kahle, T.:
Neighborliness of marginal polytopes. Contrib. Algebra Geometry 51 (2010), 45-56.
MR 2650476 |
Zbl 1238.60012
[21] Kahle, T., Ay, N.: Support sets of distributions with given interaction structure. In: Proc. WUPES'06, 2006.
[22] Kahle, T., Wenzel, W., Ay, N.:
Hierarchical models, marginal polytopes, and linear codes. Kybernetika 45 (2009), 189-208.
MR 2518148 |
Zbl 1167.94340
[25] Lindsay, B. G.:
Mixture models: theory, geometry, and applications. NSF-CBMS Regional Conference Series in Probability and Statistics. Institute of Mathematical Statistics, 1995.
Zbl 1163.62326
[26] McLachlan, G., Peel, D.:
Finite Mixture Models. Wiley Series in Probability and Statistics: Applied Probability and Statistics. Wiley, 2000.
MR 1789474 |
Zbl 0963.62061
[27] Montúfar, G. F., Ay, N.:
Refinements of universal approximation results for deep belief networks and restricted Boltzmann machines. Neural Comput. 23 (2011), 5, 1306-1319.
DOI 10.1162/NECO_a_00113 |
MR 2814846
[28] Montúfar, G. F., Rauh, J., Ay, N.: Expressive power and approximation errors of restricted Boltzmann machines. In: Advances in Neural Information Processing Systems 24 (J. Shawe-Taylor, R. Zemel, P. Bartlett, F. Pereira, and K. Weinberger, eds.), MIT Press, 2011, pp. 415-423.
[29] Rauh, J.:
Finding the Maximizers of the Information Divergence from an Exponential Family. Ph. D. Thesis, Universität Leipzig, 2011.
MR 2817016
[31] Settimi, R., Smith, J. Q.: On the geometry of Bayesian graphical models with hidden variables. In: Proc. Fourteenth conference on Uncertainty in artificial intelligence, UAI'98, Morgan Kaufmann Publishers 1998, pp. 472-479.
[33] Titterington, D., Smith, A. F. M., Makov, U. E.:
Statistical Analysis of Finite Mixture Distributions. John Wiley and Sons, 1985.
MR 0838090 |
Zbl 0646.62013
[34] Varshamov, R.: Estimate of the number of signals in error correcting codes. Dokl. Akad. Nauk SSSR 117 (1957), 739-741.