Previous |  Up |  Next

Article

Keywords:
problem of moments; representing measure
Summary:
We characterize the existence of the $L^1$ solutions of the truncated moments problem in several real variables on unbounded supports by the existence of the maximum of certain concave Lagrangian functions. A natural regularity assumption on the support is required.
References:
[1] Akhiezer, N. I.: The Classical Moment Problem and Some Related Questions in Analysis. Univ. Math. Monographs. Oliver & Boyd, Edinburgh (1965) (English translation). MR 0184042 | Zbl 0135.33803
[2] Ambrozie, C.-G.: Maximum entropy and moment problems. Real Anal. Exchange 29 (2003/04), 607-627. DOI 10.14321/realanalexch.29.2.0607 | MR 2083800
[3] Ambrozie, C.-G.: Multivariate truncated moments problems and maximum entropy, arXiv:1111.7123.
[4] Ambrozie, C.-G.: A Riesz-Haviland type result for truncated moment problems with solutions in $L^1$, arXiv:1111.6555. (to appear) in J. Operator Theory.
[5] Blekherman, G., Lasserre, J. B.: The truncated $K$-moment problem for closure of open sets. J. Funct. Anal. 263 3604-3616. DOI 10.1016/j.jfa.2012.09.001 | MR 2984077
[6] Borwein, J. M.: Maximum entropy and feasibility methods for convex and nonconvex inverse problems. Optimization 61 (2012), 1-33. DOI 10.1080/02331934.2011.632502 | MR 2875572 | Zbl 1241.45009
[7] Borwein, J. M., Lewis, A. S.: Convergence of best entropy estimates. SIAM J. Optim. 1 (1991), 191-205. DOI 10.1137/0801014 | MR 1098426 | Zbl 0756.41037
[8] Borwein, J. M., Lewis, A. S.: Duality relationships for entropy-like minimization problems. SIAM J. Control Optimization 29 (1991), 325-338. DOI 10.1137/0329017 | MR 1092730 | Zbl 0797.49030
[9] Campenhout, J. M. Van, Cover, T. M.: Maximum entropy and conditional probability. IEEE Trans. Inf. Theory IT--27 (1981), 483-489. MR 0635527
[10] Cassier, G.: Problème des moments sur un compact de $\mathbb{R}^{n}$ et décomposition de polynômes à plusieurs variables. J. Funct. Analysis 58 (1984), 254-266 French. DOI 10.1016/0022-1236(84)90042-9 | MR 0759099
[11] Cichoń, D., Stochel, J., Szafraniec, F. H.: Riesz-Haviland criterion for incomplete data. J. Math. Anal. Appl. 380 (2011), 94-104. DOI 10.1016/j.jmaa.2011.02.035 | MR 2786187 | Zbl 1214.30020
[12] Curto, R. E., Fialkow, L. A.: An analogue of the Riesz-Haviland theorem for the truncated moment problem. J. Funct. Anal. 255 (2008), 2709-2731. DOI 10.1016/j.jfa.2008.09.003 | MR 2464189 | Zbl 1158.44003
[13] Curto, R. E., Fialkow, L. A., Moeller, H. M.: The extremal truncated moment problem. Integral Equations Oper. Theory 60 (2008), 177-200. DOI 10.1007/s00020-008-1557-x | MR 2375563 | Zbl 1145.47012
[14] Fuglede, B.: The multidimensional moment problem. Exp. Math. 1 (1983), 47-65. MR 0693807 | Zbl 0514.44006
[15] Haviland, E. K.: On the momentum problem for distributions in more than one dimension. Amer. J. Math. 57 (1935), 562-568. DOI 10.2307/2371187 | MR 1507095
[16] Hauck, C. D., Levermore, C. D., Tits, A. L.: Convex duality and entropy-based moment closures; characterizing degenerate densities. SIAM J. Control Optim. 47 (2008), 1977-2015. DOI 10.1137/070691139 | MR 2421338 | Zbl 1167.49033
[17] Junk, M.: Maximum entropy for reduced moment problems. Math. Models Methods Appl. Sci. 10 (2000), 1001-1025. DOI 10.1142/S0218202500000513 | MR 1780147 | Zbl 1012.44005
[18] Kagan, A. M., Linnik, Y. V., Rao, C. R.: Characterization Problems in Mathematical Statistics. Wiley, New York (1983). MR 0346969
[19] Kuhlmann, S., Marshall, M., Schwartz, N.: Positivity, sums of squares and the multi-dimensional moment problem. II. Adv. Geom. 5 (2005), 583-606. MR 2174483 | Zbl 1095.14055
[20] Kullback, S.: Information Theory and Statistics. John Wiley, New York (1959). MR 0103557 | Zbl 0088.10406
[21] Lewis, A. S.: Consistency of moment systems. Can. J. Math. 47 (1995), 995-1006. DOI 10.4153/CJM-1995-052-2 | MR 1350646 | Zbl 0840.90106
[22] Léonard, C.: Minimization of entropy functionals. J. Math. Anal. Appl. 346 (2008), 183-204. DOI 10.1016/j.jmaa.2008.04.048 | MR 2428283 | Zbl 1152.49039
[23] Mead, L. R., Papanicolaou, N.: Maximum entropy and the problem of moments. J. Math. Phys. 25 (1984), 2404-2417. DOI 10.1063/1.526446 | MR 0751523
[24] Moreau, J. J.: Sur la fonction polaire d'une fonction semicontinue supérieurement. C. R. Acad. Sci., Paris 258 (1964), 1128-1130 French. MR 0160093 | Zbl 0144.30501
[25] Putinar, M., Vasilescu, F.-H.: Solving moment problems by dimensional extension. Ann. Math., II. Ser. 149 (1999), 1087-1107. DOI 10.2307/121083 | MR 1709313 | Zbl 0939.44003
[26] Rockafellar, R. T.: Extension of Fenchel's duality for convex functions. Duke Math. J. 33 (1966), 81-89. DOI 10.1215/S0012-7094-66-03312-6 | MR 0187062
[27] Rockafellar, R. T.: Convex Analysis. Princeton University Press, Princeton, New Jersey (1970). MR 0274683 | Zbl 0193.18401
Partner of
EuDML logo