Previous |  Up |  Next

Article

Keywords:
partial hyperbolic differential equation; fractional order; left-sided mixed Riemann-Liouville integral; mixed regularized derivative; solution; Fréchet space; fixed point
Summary:
In this paper we investigate the global existence and uniqueness of solutions for the initial value problems (IVP for short), for a class of implicit hyperbolic fractional order differential equations by using a nonlinear alternative of Leray-Schauder type for contraction maps on Fréchet spaces.
References:
[1] Abbas S., Agarwal R.P., Benchohra M.: Darboux problem for impulsive partial hyperbolic differential equations of fractional order with variable times and infinite delay. Nonlinear Anal. Hybrid Syst. 4 (2010), 818–829. MR 2680249 | Zbl 1204.35171
[2] Abbas S., Benchohra M.: Partial hyperbolic differential equations with finite delay involving the Caputo fractional derivative. Commun. Math. Anal. 7 (2009), 62–72. MR 2535015 | Zbl 1178.35371
[3] Abbas S., Benchohra M.: The method of upper and lower solutions for partial hyperbolic fractional order differential inclusions with impulses. Discuss. Math. Differ. Incl. Control Optim. 30 (2010), no. 1, 141–161. DOI 10.7151/dmdico.1116 | MR 2682404 | Zbl 1203.26005
[4] Abbas S., Benchohra M., Gorniewicz L.: Existence theory for impulsive partial hyperbolic functional differential equations involving the Caputo fractional derivative. Sci. Math. Jpn. 72 (2010), 49–60. MR 2666846 | Zbl 1200.26004
[5] Abbas S., Benchohra M., N'Guérékata G.M.: Topics in Fractional Differential Equations. Developments in Mathematics, 27, Springer, New York, 2012. DOI 10.1007/978-1-4614-4036-9 | MR 2962045
[6] Abbas S., Benchohra M., Vityuk A.N.: On fractional order derivatives and Darboux problem for implicit differential equations. Fract. Calc. Appl. Anal. 15 (2) (2012), 168–182. MR 2897771
[7] Belarbi A., Benchohra M., Ouahab A.: Uniqueness results for fractional functional differential equations with infinite delay in Fréchet spaces. Appl. Anal. 85 (2006), 1459–1470. DOI 10.1080/00036810601066350 | MR 2282996 | Zbl 1175.34080
[8] Benchohra M., Graef J.R., Hamani S.: Existence results for boundary value problems of nonlinear fractional differential equations with integral conditions. Appl. Anal. 87 (2008), no. 7, 851–863. DOI 10.1080/00036810802307579 | MR 2458962
[9] Benchohra M., Hamani S., Ntouyas S.K.: Boundary value problems for differential equations with fractional order. Surv. Math. Appl. 3 (2008), 1–12. MR 2390179 | Zbl 1198.26007
[10] Benchohra M., Henderson J., Ntouyas S.K., Ouahab A.: Existence results for functional differential equations of fractional order. J. Math. Anal. Appl. 338 (2008), 1340–1350. DOI 10.1016/j.jmaa.2007.06.021 | MR 2386501
[11] Frigon M., Granas A.: Résultats de type Leray-Schauder pour des contractions sur des espaces de Fréchet. Ann. Sci. Math. Québec 22 (1998), no. 2, 161–168. MR 1677243 | Zbl 1100.47514
[12] Henry D.: Geometric Theory of Semilinear Parabolic Partial Differential Equations. Springer, Berlin-New York, 1989.
[13] Hilfer R.: Applications of Fractional Calculus in Physics. World Scientific, Singapore, 2000. MR 1890104 | Zbl 0998.26002
[14] Kilbas A.A., Srivastava H.M., Trujillo J.J.: Theory and Applications of Fractional Differential Equations. North-Holland Mathematics Studies, 204, Elsevier Science B.V., Amsterdam, 2006. MR 2218073 | Zbl 1092.45003
[15] Kilbas A.A., Marzan S.A.: Nonlinear differential equations with the Caputo fractional derivative in the space of continuously differentiable functions. Differ. Equ. 41 (2005), 84–89. DOI 10.1007/s10625-005-0137-y | MR 2213269 | Zbl 1160.34301
[16] Miller K.S., Ross B.: An Introduction to the Fractional Calculus and Differential Equations. John Wiley, New York, 1993. MR 1219954
[17] Oldham K.B., Spanier J.: The Fractional Calculus. Academic Press, New York, London, 1974. MR 0361633 | Zbl 0292.26011
[18] Podlubny I.: Fractional Differential Equation. Academic Press, San Diego, 1999.
[19] Samko S.G., Kilbas A.A., Marichev O.I.: Fractional Integrals and Derivatives. Theory and Applications. Gordon and Breach, Yverdon, 1993. MR 1347689 | Zbl 0818.26003
[20] Vityuk A.N.: Existence of solutions of partial differential inclusions of fractional order. Izv. Vyssh. Uchebn. Zaved. Mat. 8 (1997), 13–19. MR 1485123
[21] Vityuk A.N., Golushkov A.V.: Existence of solutions of systems of partial differential equations of fractional order. Nonlinear Oscil. 7 (2004), no. 3, 318–325. DOI 10.1007/s11072-005-0015-9 | MR 2151816
[22] Vityuk A.N., Mykhailenko A.V.: On a class of fractional-order differential equation. Nonlinear Oscil. 11 (2008), no. 3, 307–319. DOI 10.1007/s11072-009-0032-1 | MR 2512745
[23] Vityuk A.N., Mykhailenko A.V.: The Darboux problem for an implicit fractional-order differential equation. J. Math. Sci. 175 (4) (2011), 391–401. DOI 10.1007/s10958-011-0353-3 | MR 2977138
Partner of
EuDML logo