Article
Keywords:
lipschitzian mapping; firmly lipschitzian mapping; $n$-periodic mapping; fixed point; retractions
Summary:
W.A. Kirk in 1971 showed that if $T\colon C\to C$, where $C$ is a closed and convex subset of a Banach space, is $n$-periodic and uniformly $k$-lipschitzian mapping with $k<k_0(n)$, then $T$ has a fixed point. This result implies estimates of $k_0(n)$ for natural $n\geq 2$ for the general class of $k$-lipschitzian mappings. In these cases, $k_0(n)$ are less than or equal to 2. Using very simple method we extend this and later results for a certain subclass of the family of $k$-lipschitzian mappings. In the paper we show that $k_0(3)>2$ in any Banach space. We also show that $\operatorname{Fix}(T)$ is a Hölder continuous retract of $C$.
References:
[2] Goebel K.:
Convexity of balls and fixed point theorems for mappings with nonexpansive square. Compositio Math. 22 (1970), 269–274.
MR 0273477 |
Zbl 0202.12802
[3] Goebel K., Kirk W.A.:
A fixed point theorem for transformations whose iterates have uniform Lipschitz constant. Studia Math. 47 (1973), 135–140.
MR 0336468 |
Zbl 0265.47044
[4] Goebel K., Koter M.:
Regularly nonexpansive mappings. Ann. Stiint. Univ. “Al.I. Cuza” Iaşi 24 (1978), 265–269.
MR 0533754 |
Zbl 0402.47032
[5] Goebel K., Złotkiewicz E.:
Some fixed point theorems in Banach spaces. Colloquium Math. 23 (1971), 103–106.
MR 0303367 |
Zbl 0223.47022
[6] Górnicki J.:
Fixed points of involution. Math. Japonica 43 (1996), no. 1, 151–155.
MR 1373993
[7] Górnicki J., Pupka K.:
Fixed point theorems for $n$-periodic mappings in Banach spaces. Comment. Math. Univ. Carolin. 46 (2005), no. 1, 33–42.
MR 2175857 |
Zbl 1123.47038
[9] Kirk W.A., Sims B. (eds.):
Handbook of Metric Fixed Point Theory. Kluwer Acad. Pub., Dordrecht-Boston-London, 2001.
MR 1904271 |
Zbl 0970.54001
[10] Koter M.:
Fixed points of lipschitzian $2$-rotative mappings. Boll. Un. Mat. Ital. C (6) 5 (1986), 321–339.
MR 0897203 |
Zbl 0634.47053
[11] Linhart J.:
Fixpunkte von Involutionen $n$-ter Ordnung. Österreich. Akad. Wiss. Math.-Natur., Kl. II 180 (1972), 89–93.
MR 0303369 |
Zbl 0244.47041
[12] Perez Garcia V., Fetter Nathansky H.:
Fixed points of periodic mappings in Hilbert spaces. Ann. Univ. Mariae Curie-Skłodowska Sect. A 64 (2010), no. 2, 37–48.
MR 2771119