[4] Argyros, I. K.: The Theory and Application of Abstract Polynomial Equations. St. Lucie/CRC/Lewis Publ. Mathematics series, Boca Raton, Florida, USA (1998).
[8] Argyros, I. K.:
Approximating solutions of equations using Newton's method with a modified Newton's method iterate as a starting point. Rev. Anal. Numér. Théor. Approx. 36 (2007), 123-137.
MR 2498828 |
Zbl 1199.65179
[9] Argyros, I. K.:
Computational Theory of Iterative Methods. Studies in Computational Mathematics 15. Elsevier, Amsterdam (2007).
MR 2356038 |
Zbl 1147.65313
[12] Argyros, I. K., Hilout, S.:
Efficient Methods for Solving Equations and Variational Inequalities. Polimetrica Publisher, Milano, Italy (2009).
MR 2424657
[13] Argyros, I. K., Hilout, S.:
Enclosing roots of polynomial equations and their applications to iterative processes. Surv. Math. Appl. 4 (2009), 119-132.
MR 2558651 |
Zbl 1205.26023
[15] Argyros, I. K., Hilout, S., Tabatabai, M. A.:
Mathematical Modelling with Applications in Biosciences and Engineering. Nova Publishers, New York, 2011.
MR 2895345
[16] Bi, W., Wu, Q., Ren, H.:
Convergence ball and error analysis of the Ostrowski-Traub method. Appl. Math., Ser. B (Engl. Ed.) 25 (2010), 374-378.
MR 2679357 |
Zbl 1240.65167
[19] Deuflhard, P.:
Newton Methods for Nonlinear Problems. Affine Invariance and Adaptive Algorithms. Springer Series in Computational Mathematics 35. Springer, Berlin (2004).
MR 2063044 |
Zbl 1056.65051
[20] Ezquerro, J. A., Gutiérrez, J. M., Hernández, M. A., Romero, N., Rubio, M. J.:
The Newton method: from Newton to Kantorovich. Spanish Gac. R. Soc. Mat. Esp. 13 (2010), 53-76.
MR 2647925 |
Zbl 1195.65001
[26] Kantorovich, L. V., Akilov, G. P.:
Functional Analysis. Transl. from the Russian. Pergamon Press, Oxford (1982).
MR 0664597 |
Zbl 0484.46003
[27] Krishnan, S., Manocha, D.:
An efficient surface intersection algorithm based on lower-dimensional formulation. ACM Trans. on Graphics. 16 (1997), 74-106.
DOI 10.1145/237748.237751
[28] Lukács, G.:
The generalized inverse matrix and the surface-surface intersection problem. Theory and Practice of Geometric Modeling, Lect. Conf., Blaubeuren/FRG 1988 167-185 (1989).
MR 1042329 |
Zbl 0692.68076
[29] Ortega, J. M., Rheinboldt, W. C.:
Iterative Solution of Nonlinear Equations in Several Variables. Computer Science and Applied Mathematics. Academic Press, New York (1970).
MR 0273810 |
Zbl 0241.65046
[30] Ostrowski, A. M.:
Sur la convergence et l'estimation des erreurs dans quelques procédés de résolution des équations numériques. French Gedenkwerk D. A. Grave, Moskau 213-234 (1940).
MR 0004377 |
Zbl 0023.35302
[31] Ostrowski, A. M.:
La méthode de Newton dans les espaces de Banach. (The Newton method in Banach spaces). French C. R. Acad. Sci., Paris, Sér. A 272 (1971), 1251-1253.
MR 0285110 |
Zbl 0228.65041
[32] Ostrowski, A. M.:
Solution of Equations in Euclidean and Banach Spaces. 3rd ed. of solution of equations and systems of equations. Pure and Applied Mathematics, 9. Academic Press, New York (1973).
MR 0359306 |
Zbl 0304.65002
[33] Păvăloiu, I.: Introduction in the Theory of Approximation of Equations Solutions. Dacia Ed. Cluj-Napoca (1976).
[34] Potra, F. A.:
A characterization of the divided differences of an operator which can be represented by Riemann integrals. Math., Rev. Anal. Numér. Théor. Approximation, Anal. Numér. Théor. Approximation 9 (1980), 251-253.
MR 0651780 |
Zbl 0523.65043
[35] Potra, F. A.:
An application of the induction method of V. Pták to the study of regula falsi. Apl. Mat. 26 (1981), 111-120.
MR 0612668 |
Zbl 0486.65038
[36] Potra, F. A.:
The rate of convergence of a modified Newton's process. Apl. Mat. 26 (1981), 13-17.
MR 0602398 |
Zbl 0486.65039
[38] Potra, F. A.:
On the convergence of a class of Newton-like methods. Iterative solution of nonlinear systems of equations, Proc. Meeting, Oberwolfach 1982, Lect. Notes Math. 953 125-137.
DOI 10.1007/BFb0069378 |
MR 0678615 |
Zbl 0507.65020
[39] Potra, F. A.:
On the a posteriori error estimates for Newton's method. Beitr. Numer. Math. 12 (1984), 125-138.
MR 0732159
[41] Potra, F. A.:
Sharp error bounds for a class of Newton-like methods. Libertas Math. 5 (1985), 71-84.
MR 0816258 |
Zbl 0581.47050
[46] Potra, F. A., Pták, V.:
Nondiscrete Induction and Iterative Processes. Research Notes in Mathematics, 103. Pitman Advanced Publishing Program, Boston (1984).
MR 0754338 |
Zbl 0549.41001
[50] Pták, V.:
A quantitative refinement of the closed graph theorem. Czech. Math. J. 24 (1974), 503-506.
MR 0348431 |
Zbl 0315.46007
[52] Pták, V.:
Deux théoremes de factorisation. C. R. Acad. Sci., Paris, Sér. A 278 (1974), 1091-1094.
MR 0341096 |
Zbl 0277.46047
[53] Pták, V.:
Concerning the rate of convergence of Newton's process. Commentat. Math. Univ. Carol. 16 (1975), 699-705.
MR 0398092 |
Zbl 0314.65023
[59] Pták, V.:
Stability of exactness. Commentat. math., spec. Vol. II, dedic. L. Orlicz (1979), 283-288.
MR 0552012 |
Zbl 0445.46003
[68] Zinčenko, A. I.:
Some approximate methods of solving equations with non-differentiable operators. Ukrainian Dopovidi Akad. Nauk Ukraïn. RSR (1963), 156-161.
MR 0160096