Previous |  Up |  Next

Article

Keywords:
second order differential equation on a half line; non-homogeneous boundary value problem; Leggett-Williams fixed point theorem
Summary:
By applying the Leggett-Williams fixed point theorem in a suitably constructed cone, we obtain the existence of at least three unbounded positive solutions for a boundary value problem on the half line. Our result improves and complements some of the work in the literature.
References:
[1] Agarwal, R. P., O'Regan, D., Wong, P. J. Y.: Positive Solutions of Differential, Difference and Integral Equations. Kluwer Academic Publishers Dordrecht (1999). MR 1680024 | Zbl 1157.34301
[2] Agarwal, R. P., O'Regan, D., Wong, P. J. Y.: Constant-sign solutions of a system of Fredholm integral equations. Acta Appl. Math. 80 (2004), 57-94. DOI 10.1023/B:ACAP.0000013257.42126.ca | MR 2034575 | Zbl 1053.45004
[3] Agarwal, R. P., O'Regan, D., Wong, P. J. Y.: Eigenvalues of a system of Fredholm integral equations. Math. Comput. Modelling 39 (2004), 1113-1150. DOI 10.1016/S0895-7177(04)90536-5 | MR 2069517 | Zbl 1068.45001
[4] Agarwal, R. P., O'Regan, D., Wong, P. J. Y.: Triple solutions of constant sign for a system of Fredholm integral equations. Cubo 6 (2004), 1-45. MR 2124824 | Zbl 1082.45004
[5] Djebali, S., Mebarki, K.: Multiple positive solutions for singular BVPs on the positive half-line. Comput. Math. Appl. 55 (2008), 2940-2952. DOI 10.1016/j.camwa.2007.11.023 | MR 2401442 | Zbl 1142.34316
[6] Guo, Y., Yu, C., Wang, J.: Existence of three positive solutions for $m$-point boundary value problems on infinite intervals. Nonlinear Anal., Theory Methods Appl. 71 (2009), 717-722. MR 2527493 | Zbl 1172.34310
[7] Kang, P., Wei, Z.: Multiple positive solutions of multi-point boundary value problems on the half-line. Appl. Math. Comput. 196 (2008), 402-415. DOI 10.1016/j.amc.2007.06.004 | MR 2382579 | Zbl 1136.34026
[8] Leggett, R. W., Williams, L. R.: Multiple positive fixed points of nonlinear operators on ordered Banach spaces. Indiana Univ. Math. J. 28 (1979), 673-688. DOI 10.1512/iumj.1979.28.28046 | MR 0542951 | Zbl 0421.47033
[9] Lian, H., Ge, W.: Solvability for second-order three-point boundary value problems on a half-line. Appl. Math. Lett. 19 (2006), 1000-1006. DOI 10.1016/j.aml.2005.10.018 | MR 2246166 | Zbl 1123.34307
[10] Lian, H., Ge, W.: Existence of positive solutions for Sturm-Liouville boundary value problems on the half-line. J. Math. Anal. Appl. 321 (2006), 781-792. DOI 10.1016/j.jmaa.2005.09.001 | MR 2241155 | Zbl 1104.34020
[11] Lian, H., Pang, H., Ge, W.: Triple positive solutions for boundary value problems on infinite intervals. Nonlinear Anal., Theory Methods Appl. 67 (2007), 2199-2207. DOI 10.1016/j.na.2006.09.016 | MR 2331870 | Zbl 1128.34011
[12] Lian, H., Pang, H., Ge, W.: Solvability for second-order three-point boundary value problems at resonance on a half-line. J. Math. Anal. Appl. 337 (2008), 1171-1181. DOI 10.1016/j.jmaa.2007.04.038 | MR 2386366 | Zbl 1136.34034
[13] Lian, H., Pang, H., Ge, W.: Unbounded upper and lower solutions method for Sturm-Liouville boundary value problem on infinite intervals. Nonlinear Anal., Theory Methods Appl. 70 (2009), 2627-2633. MR 2499729
[14] Liang, S., Zhang, J.: The existence of countably many positive solutions for one-dimensional $p$-Laplacian with infinitely many singularities on the half-line. Appl. Math. Comput. 201 (2008), 210-220. DOI 10.1016/j.amc.2007.12.016 | MR 2432596 | Zbl 1157.34016
[15] Liang, S., Zhang, J.: The existence of countably many positive solutions for nonlinear singular $m$-point boundary value problems on the half-line. J. Comput. Appl. Math. 222 (2008), 229-243. DOI 10.1016/j.cam.2007.10.062 | MR 2474626 | Zbl 1183.34031
[16] Liang, S., Zhang, J.: The existence of countably many positive solutions for some nonlinear three-point boundary problems on the half-line. Nonlinear Anal., Theory Methods Appl. 70 (2009), 3127-3139. MR 2503058 | Zbl 1166.34304
[17] Liu, Y.: The existence of three positive solutions to integral type BVPs for second order ODEs with one-dimensional $p$-Laplacian. Bull. Malays. Math. Sci. Soc. (2) 35 359-372 (2012). MR 2893462 | Zbl 1243.34036
[18] Liu, Y.: Boundary value problem for second order differential equations on unbounded domains. Acta Anal. Funct. Appl. 4 (2002), 211-216 Chinese. MR 1956716 | Zbl 1038.34030
[19] Liu, Y.: Existence and unboundedness of positive solutions for singular boundary value problems on half-line. Appl. Math. Comput. 144 (2003), 543-556. DOI 10.1016/S0096-3003(02)00431-9 | MR 1994092 | Zbl 1036.34027
[20] O'Regan, D., Yan, B., Agarwal, R. P.: Solutions in weighted spaces of singular boundary value problems on the half-line. J. Comput. Appl. Math. 205 (2007), 751-763. DOI 10.1016/j.cam.2006.02.055 | MR 2329651 | Zbl 1124.34008
[21] Palamides, P. K., Galanis, G. N.: Positive, unbounded and monotone solutions of the singular second Painlevé equation on the half-line. Nonlinear Anal., Theory Methods Appl. 57 (2004), 401-419. MR 2064098 | Zbl 1053.34028
[22] Tian, Y., Ge, W.: Positive solutions for multi-point boundary value problem on the half-line. J. Math. Anal. Appl. 325 (2007), 1339-1349. DOI 10.1016/j.jmaa.2006.02.075 | MR 2270088 | Zbl 1110.34018
[23] Wei, Y., Wong, P. J. Y., Ge, W.: The existence of multiple positive solutions to boundary value problems of nonlinear delay differential equations with countably many singularities on infinite interval. J. Comput. Appl. Math. 233 (2010), 2189-2199. DOI 10.1016/j.cam.2009.10.005 | MR 2577758 | Zbl 1187.34086
[24] Yan, B.: Multiple unbounded solutions of boundary value problems for second-order differential equations on the half-line. Nonlinear Anal., Theory Methods Appl. 51 (2002), 1031-1044. MR 1926083 | Zbl 1021.34021
[25] Yan, B., Liu, Y.: Unbounded solutions of the singular boundary value problems for second order differential equations on the half-line. Appl. Math. Comput. 147 (2004), 629-644. DOI 10.1016/S0096-3003(02)00801-9 | MR 2011077 | Zbl 1045.34009
[26] Yan, B., O'Regan, D., Agarwal, R. P.: Unbounded solutions for singular boundary value problems on the semi-infinite interval: upper and lower solutions and multiplicity. J. Comput. Appl. Math. 197 (2006), 365-386. DOI 10.1016/j.cam.2005.11.010 | MR 2260412 | Zbl 1116.34016
[27] Yan, B., O'Regan, D., Agarwal, R. P.: Positive solutions for second order singular boundary value problems with derivative dependence on infinite intervals. Acta Appl. Math. 103 (2008), 19-57. MR 2415171 | Zbl 1158.34011
[28] Yan, B., Timoney, R. M.: Positive solutions for nonlinear singular boundary value problems on the half line. Int. J. Math. Anal., Ruse 1 (2007), 1189-1208. MR 2382022 | Zbl 1149.34011
[29] Zhang, X., Liu, L., Wu, Y.: Existence of positive solutions for second-order semipositone differential equations on the half-line. Appl. Math. Comput. 185 (2007), 628-635. DOI 10.1016/j.amc.2006.07.056 | MR 2297833 | Zbl 1117.34033
[30] Zima, M.: On positive solutions of boundary value problems on the half-line. J. Math. Anal. Appl. 259 (2001), 127-136. DOI 10.1006/jmaa.2000.7399 | MR 1836449 | Zbl 1003.34024
Partner of
EuDML logo