[1] Ahn, H. J.:
Vibration of a pendulum consisiting of a bob suspended from a wire: the method of integral equations. Quart. Appl. Math. 39 (1981), 109-117.
DOI 10.1090/qam/613954 |
MR 0613954
[2] Russo, A. Alonso A. D.:
Spectral approximation of variationally-posed eigenvalue problems by nonconforming methods. J. Comput. Appl. Math. 223 (2009), 177-197.
DOI 10.1016/j.cam.2008.01.008 |
MR 2463110
[4] Arbogast, T., Chen, Z.:
On the implementation of mixed methods as nonconforming methods for second-order elliptic problems. Math. Comput. 64 (1995), 943-972.
MR 1303084 |
Zbl 0829.65127
[5] Armentano, M. G., Durán, R. G.:
Asymptotic lower bounds for eigenvalues by nonconforming finite element methods. ETNA, Electron. Trans. Numer. Anal. 17 (2004), 93-101.
MR 2040799 |
Zbl 1065.65127
[7] Babuška, I., Osborn, J.:
Eigenvalue problems. In: Finite Element Methods (Part 1). Handbook of Numerical Analysis, Vol. 2 North-Holland Amsterdam (1991), 641-787.
MR 1115240
[9] Bergman, S., Schiffer, M.:
Kernel Functions and Elliptic Differential Equations in Mathematical Physics. Academic Press New York (1953).
MR 0054140 |
Zbl 0053.39003
[12] Bramble, J. H., Osborn, J. E.:
Approximation of Steklov eigenvalues of non-selfadjoint second order elliptic operators. Math. Found. Finite Element Method Applications PDE A. Aziz Academic Press New York (1972), 387-408.
MR 0431740 |
Zbl 0264.35055
[14] Cai, Z., Ye, X., Zhang, S.:
Discontinuous Galerkin finite element methods for interface problems: A priori and a posteriori error estimations. SIAM J. Numer. Anal. 49 (2011), 1761-1787.
DOI 10.1137/100805133 |
MR 2837483 |
Zbl 1232.65142
[16] Conca, C., Planchard, J., Vanninathan, M.:
Fluid and Periodic Structures. John Wiley & Sons Chichester (1995).
MR 1652238
[17] Crouzeix, M., Raviart, P.-A.:
Conforming and nonconforming finite element methods for solving the stationary Stokes equations I. Rev. Franc. Automat. Inform. Rech. Operat. 7 (1973), 33-76.
MR 0343661
[18] Dunford, N., Schwartz, J. T.:
Linear Operators, Part II: Spectral Theory. Selfadjoint Operators in Hilbert Space. Interscience Publishers/John Wiley & Sons New York/London (1963).
MR 1009163
[19] Goerisch, F., Albrecht, J.:
The Convergence of a New Method for Calculating Lower Bounds to Eigenvalues, Equadiff 6 (Brno, 1985). Lecture Notes in Math. Vol. 1192. Springer Berlin (1986).
MR 0877140
[20] Goerisch, F., He, Z.:
The Determination of Guaranteed Bounds to Eigenvalues with the Use of Variational Methods. I. Computer Arithmetic and Self-validating Numerical Methods (Basel, 1989), Notes Rep. Math. Sci. Engrg., 7. Academic Press Boston (1990).
MR 1104000
[21] Han, H. D., Guan, Z.:
An analysis of the boundary element approximation of Steklov eigenvalue problems. In: Numerical Methods for Partial Differential Equations World Scientific River Edge (1992), 35-51.
MR 1160822
[22] Han, H. D., Guan, Z., He, B.:
Boundary element approximation of Steklov eigenvalue problem. Gaoxiao Yingyong Shuxue Xuebao Ser. A 9 (1994), 128-135 Chinese.
MR 1293212
[23] Hinton, D. B., Shaw, J. K.:
Differential operators with spectral parameter incompletely in the boundary conditions. Funkc. Ekvacioj, Ser. Int. 33 (1990), 363-385.
MR 1086767 |
Zbl 0715.34133
[24] Hu, J., Huang, Y., Lin, Q.: The analysis of the lower approximation of eigenvalues by nonconforming elements. (to appear).
[25] Huang, J., Lü, T.:
The mechanical quadrature methods and their extrapolation for solving BIE of Steklov eigenvalue problems. J. Comput. Math. 22 (2004), 719-726.
MR 2080438 |
Zbl 1069.65123
[28] Lin, Q., Lin, J.: Finite Element Methods: Accuracy and Improvement. Science Press Beijing (2006).
[30] Lin, Q., Xie, H., Luo, F., Li, Y., Yang, Y.:
Stokes eigenvalue approximations from below with nonconforming mixed finite element methods. Math. Pract. Theory 40 (2010), 157-168.
MR 2768711
[32] Tang, W., Guan, Z., Han, H.:
Boundary element approximation of Steklov eigenvalue problem for Helmholtz equation. J. Comput. Math. 16 (1998), 165-178.
MR 1610674 |
Zbl 0977.65100
[33] Wang, L., Xu, X.: Foundation of Mathematics in Finite Element Methods. Scientific and Technical Publishers Beijing (2004).
[34] Yang, Y.:
A posteriori error estimates in Adini finite element for eigenvalue problems. J. Comput. Math. 18 (2000), 413-418.
MR 1773912 |
Zbl 0957.65092
[39] Zhang, Z., Yang, Y., Chen, Z.:
Eigenvalue approximation from below by Wilson's element. Math. Numer. Sin. 29 (2007), 319-321 Chinese.
MR 2370469 |
Zbl 1142.65435