[1] Berger, M.:
Riemannian geometry during the second half of the twentieth century. 2000, University Lecture Series, Vol. 17, Amer. Math. Soc., Providence RI,
MR 1729907 |
Zbl 0944.53001
[2] Besse, A. L.:
Einstein Manifolds. 1987, Erg. Math. Grenzgebiete 10, Springer-Verlag, Heidberg-Berlin-New York,
MR 0867684 |
Zbl 0613.53001
[3] Chang, S.-Y. A., Gursky, M. J., Yang, P.:
An equation of Monge-Ampere type in conformal georemtry and four manifolds of positive Ricci curvature. Ann. Math., 155, 3, 2002, 709-787,
DOI 10.2307/3062131 |
MR 1923964
[4] Gursky, M. J.:
Locally conformally flat 4 and 6 manifolds of positive scalar curvature and positive Euler characteristic. Indiana Univ. Math. J., 43, 1994, 747-774,
DOI 10.1512/iumj.1994.43.43033 |
MR 1305946
[8] Lanczos, C.:
A remarkable property of the riemann-Christoffel tensor in four dimentions. Ann. Math., 39, 4, 1938, 842-850,
DOI 10.2307/1968467 |
MR 1503440
[10] Reilly, R. C.:
Variational properties of functions of the mean curvatures for hypersurfaces in space forms. J. Differ. Geom., MR49:6102, 8, 3, 1973, 465-477,
MR 0341351 |
Zbl 0277.53030
[12] Schoen, R.:
Variation theory for the total scalar curvature functional for Riemannian metrics and related topics. Lecture Notes in Math. 1365, Topics in Calculus of Variations, Montecatini. Terme Springer. Verlag, 1987, 120-154,
MR 0994021