Previous |  Up |  Next

Article

Keywords:
Bernstein-Gelfand-Gelfand resolution; Cartan connection; parabolic geometry; Yamabe operator
Summary:
We show that the conformally invariant Yamabe operator on a complex conformal manifold can be constructed as a first BGG operator by inducing from certain infinite-dimensional representation.
References:
[1] Calderbank, D. M. J., Diemer, T.: Differential invariants and curved Bernstein–Gelfand–Gelfand sequences. J. Reine Angew. Math. 537 (2001), 67–103. MR 1856258 | Zbl 0985.58002
[2] Cap, A., Gover, A. R, Hammerl, M.: Projective BGG equations, algebraic sets, and compactifications of Einstein geometries. arXiv:1005.2246, May 2010.
[3] Čap, A., Slovák, J.: Parabolic geometries. I. Math. Surveys Monogr., American Mathematical Society, 2009. MR 2532439 | Zbl 1183.53002
[4] Čap, A., Slovák, J., Souček, V.: Bernstein–Gelfand–Gelfand Sequences. Ann. of Math. (2) 154 (1) (2001), 97–113. DOI 10.2307/3062111 | MR 1847589 | Zbl 1159.58309
[5] Davidson, M. G., Enright, T. J., Stanke, R. J.: Differential operators and highest weight representations. Mem. Amer. Math. Soc. 94 (455) (1991), iv+102. MR 1081660 | Zbl 0759.22015
[6] Enright, T., Howe, R., Wallach, N.: A classification of unitary highest weight modules. Representation theory of reductive groups (Park City, Utah, 1982), Birkhäuser Boston, 1983. MR 0733809 | Zbl 0535.22012
[7] Enright, T. J.: Analogues of Kostant’s $\mathfrak{u}$–cohomology formulas for unitary highest weight modules. 392 (1988), 27–36. MR 0965055
[8] Gover, A. R., Hirachi, K.: Conformally invariant powers of the Laplacian – A complete nonexistence theorem. J. Amer. Math. Soc. 17 (2004), 389–405. DOI 10.1090/S0894-0347-04-00450-3 | MR 2051616 | Zbl 1066.53037
[9] Graham, C. R.: Conformally invariant powers of the Laplacian. II. Nonexistence. J. London Math. Soc. (2) 46 (3) (1992), 566–576. DOI 10.1112/jlms/s2-46.3.566 | MR 1190439 | Zbl 0726.53011
[10] Huang, Jing–Song, Pandžič, P., Renard, D.: Dirac operators and Lie algebra cohomology. Represent. Theory 10 (2006), 299–313. DOI 10.1090/S1088-4165-06-00267-6 | MR 2240703 | Zbl 1134.22011
[11] Kostant, B.: Lie algebra cohomology and the generalized Borel–Weil Theorem. Ann. of Math. (2) 74 (1961), 329–387. DOI 10.2307/1970237 | MR 0142696 | Zbl 0134.03501
[12] Pandžič, P.: Dirac operators on Weil representations II. Math. Commun. 15 (2) (2010), 411–424. MR 2814264 | Zbl 1207.22009
[13] Vogan, D. A., Jr., : Unitary representations and complex analysis. Representation theory and complex analysis, Lecture Notes in Math., vol. 1931, Springer, Berlin, 2008, pp. 259–344. MR 2409701 | Zbl 1143.22002
Partner of
EuDML logo