Previous |  Up |  Next

Article

Keywords:
$\mathbb{Z}_2^k$-symmetric space; flag manifolds; Riemannian metrics
Summary:
Flag manifolds are in general not symmetric spaces. But they are provided with a structure of $\mathbb{Z}_2^k$-symmetric space. We describe the Riemannian metrics adapted to this structure and some properties of reducibility. The conditions for a metric adapted to the $\mathbb{Z}_2^2$-symmetric structure to be naturally reductive are detailed for the flag manifold $SO(5)/SO(2)\times SO(2) \times SO(1)$.
References:
[1] Arias–Marco, T., Kowalski, O.: Classification of 4–dimensional homogeneous D’Atri spaces. Czechoslovak Math. J. 58 (1) (2008), 203–239. DOI 10.1007/s10587-008-0014-y | MR 2402535 | Zbl 1174.53024
[2] Bahturin, Y., Goze, M.: $\mathbb{Z}_2^2$–symmetric spaces. Pacific J. Math. 236 (1) (2008), 1–21. DOI 10.2140/pjm.2008.236.1 | MR 2398984
[3] Bouyakoub, A., Goze, M., Remm, E.: On Riemannian non symmetric spaces and flag manifolds. arXiv:math/0609790. MR 2114414
[4] Goze, M., Remm, E.: $\Gamma $–symmetric spaces. Differential geometry, World Sci. Publ., Hackensack, NJ, 2009, pp. 195–206. MR 2523505 | Zbl 1178.53047
[5] Kobayashi, S., Nomizu, K.: Foundations of differential geometry, Vollume II. llume II, Interscience Tracts in Pure and Applied Mathematics, No. 15, Interscience Publishers John Wiley and Sons, Inc., New York–London–Sydney, 1969. MR 0238225
[6] Kobayashi, S., Nomizu, K.: Foundations of differential geometry, volume I. lume I, Interscience Publishers, John Wiley and Sons, New York–London, 1963. MR 0152974
[7] Kollross, A.: Exceptional $Z_2\times Z_2$–symmetric spaces. Pacific J. Math. 242 (1) (2009), 113–130. DOI 10.2140/pjm.2009.242.113 | MR 2525505
[8] Kowalski, O.: Generalized symmetric spaces, volume II. lume II, Lecture Notes in Math. 805, Springer–Verlag, Berlin–New York, 1980. MR 0579184
[9] Lutz, R.: Sur la géométrie des espaces $\Gamma $–symétriques. C. R. Acad. Sci. Paris Sér. I Math. 293 (1) (1981), 55–58. MR 0633562 | Zbl 0474.53047
Partner of
EuDML logo