[3] Borel, A. (ed.), :
Algebraic D–modules. Perspective in Math., vol. 2, Academic Press, 1987.
MR 0882000 |
Zbl 0642.32001
[4] Deligne, P.:
Équations différentielles à points singuliers réguliers (French). Lecture Notes in Math., vol. 163, Springer Verlag, 1970.
MR 0417174
[5] Frenkel, I., Lepowsky, I., Meurman, A.:
Vertex operator algebras and the Monster. Academic Press, Boston, MA, 1988.
MR 0996026 |
Zbl 0674.17001
[7] Griffin, P. A., Hernandez, O. F.:
Structure of irreducible $SU(2)$ parafermion modules derived vie the Feigin–Fuchs construction. Internat. J. Modern Phys. A 7 (1992), 1233–1265.
DOI 10.1142/S0217751X92000533 |
MR 1146819
[8] Grothendieck, A.:
Esquisse d’un programme. Geometric Galois Actions (L.Schneps, Lochak, P., eds.), London Math. Soc. Lecture Notes 242, Cambridge University Press, 1997.
MR 1483107 |
Zbl 0901.14001
[11] Huang, Y. Z.:
Two-dimensional conformal geometry and vertex operator algebras. Prog. Math. 148, Birkhäuser, Boston, 1997.
MR 1448404 |
Zbl 0884.17021
[12] Huang, Y. Z.:
Generalized rationality and a “Jacobi identity" for intertwining operator algebras. Selecta Math. (N.S.) 6 (3) (2000), 22–267.
MR 1817614 |
Zbl 1013.17026
[14] Huang, Y. Z., Lepowsky, J.:
Tensor products of modules for a vertex operator algebra and vertex tensor categories. Lie theory and geometry, Prog. Math. 123, Birkhäuser, Boston, 1994, pp. 349–383.
MR 1327541 |
Zbl 0848.17031
[16] Huang, Y.Z.:
Representations of vertex operator algebras and braided finite tensor categories. Vertex algebras and related areas, Contemp. Math. 497, Amer. Math. Soc., Providence, RI, 2009, pp. 97–111.
MR 2568402
[17] Segal, G.:
The definition of conformal field theory. Topology, geometry and quantum field theory, London Math. Soc. Lecture Ser. 308, Cambridge Univ. Press, Cambridge, 2004, preprint in the 1980's, pp. 421–577.
MR 2079383