Previous |  Up |  Next

Article

Keywords:
local reflexion space; flat Cartan geometry; local infinitesimal automorphisms
Summary:
A reflexion space is generalization of a symmetric space introduced by O. Loos in [4]. We generalize locally symmetric spaces to local reflexion spaces in the similar way. We investigate, when local reflexion spaces are equivalently given by a locally flat Cartan connection of certain type.
References:
[1] Alekseevsky, D. V., Michor, P. W.: Differential geometry of $\mathfrak{g}$–manifolds. Differential Geom. Appl. 5 (1995), 371–403. DOI 10.1016/0926-2245(95)00023-2 | MR 1362865
[2] Čap, A., Slovák, J.: Parabolic Geometries I: Background and General Theory. Math. Surveys Monogr. 154 (2009). MR 2532439 | Zbl 1183.53002
[3] Kolář, I., Michor, P. W., Slovák, J.: Natural Operations in Differential Geometry. Springer Verlag, Berlin–Heidelberg, 1993. MR 1202431
[4] Loos, O.: Spiegelungsräume und homogene symmetrische Räume. Math. Z. 99 (1967), 141–170. DOI 10.1007/BF01123745 | MR 0212742 | Zbl 0148.17403
[5] Loos, O.: An intrinsic characterization of fibre bundles associated with homogeneous spaces defined by Lie group automorphisms. Abh. Math. Sem. Univ. Hamburg 37 (1972), 160–179. DOI 10.1007/BF02999694 | MR 0307124 | Zbl 0239.55018
[6] Sharpe, R. W.: Differential Geometry, Cartan’s Generalization of Klein’s Erlangen Program. Springer Verlag, New York, 1997. MR 1453120 | Zbl 0876.53001
Partner of
EuDML logo