Previous |  Up |  Next

Article

Keywords:
$n$-th order differential equations; comparison theorem; oscillation; property (B)
Summary:
In this paper we offer criteria for property (B) and additional asymptotic behavior of solutions of the $n$-th order delay differential equations \begin{equation*} \big (r(t)\big [x^{(n-1)}(t)\big ]^{\gamma }\big )^{\prime }=q(t)f\big (x(\tau (t))\big )\,. \end{equation*} Obtained results essentially use new comparison theorems, that permit to reduce the problem of the oscillation of the n-th order equation to the the oscillation of a set of certain the first order equations. So that established comparison principles essentially simplify the examination of studied equations. Both cases $\int ^{\infty } r^{-1/\gamma }(t)\,{t}=\infty $ and $\int ^{\infty } r^{-1/\gamma }(t)\,{t}<\infty $ are discussed.
References:
[1] Agarwal, R. P., Grace, S. R., O’Regan, D.: Oscillation Theory for Difference and Functional Differential Equations. Marcel Dekker, Kluwer Academic, Dordrecht, 2000. MR 1774732
[2] Agarwal, R. P., Grace, S. R., O’Regan, D.: Oscillation criteria for certain $n$–th order differential equations with deviating arguments. J. Math. Anal. Appl. 262 (2001), 601–622. DOI 10.1006/jmaa.2001.7571 | MR 1859327 | Zbl 0997.34060
[3] Agarwal, R. P., Grace, S. R., O’Regan, D.: The oscillation of certain higher–order functional differential equations. Math. Comput. Modelling 37 (2003), 705–728. DOI 10.1016/S0895-7177(03)00079-7 | MR 1981237 | Zbl 1070.34083
[4] Baculíková, B., Džurina, J.: Oscillation of third–order neutral differential equations. Math. Comput. Modelling 52 (2010), 215–226. DOI 10.1016/j.mcm.2010.02.011 | MR 2645933 | Zbl 1201.34097
[5] Baculíková, B., Džurina, J., Graef, J. R.: On the oscillation of higher order delay differential equations. Nonlinear Oscillations 15 (2012), 13–24. MR 2986592 | Zbl 1267.34121
[6] Bainov, D. D., Mishev, D. P.: Oscillation Theory for Nonlinear Differential Equations with Delay. Adam Hilger, Bristol, Philadelphia, New York, 1991.
[7] Džurina, J.: Comparison theorems for nonlinear ODE’s. Math. Slovaca 42 (1992), 299–315. MR 1182960 | Zbl 0760.34030
[8] Erbe, L. H., Kong, Q., Zhang, B.G.: Oscillation Theory for Functional Differential Equations. Marcel Dekker, New York, 1994. MR 1309905 | Zbl 0821.34067
[9] Grace, S. R., Agarwal, R. P., Pavani, R., Thandapani, E.: On the oscillation of certain third order nonlinear functional differential equations. Appl. Math. Comput. 202 (2008), 102–112. DOI 10.1016/j.amc.2008.01.025 | MR 2437140 | Zbl 1154.34368
[10] Grace, S. R., Lalli, B. S.: Oscillation of even order differential equations with deviating arguments. J. Math. Anal. Appl. 147 (1990), 569–579. DOI 10.1016/0022-247X(90)90371-L | MR 1050228 | Zbl 0711.34085
[11] Kiguradze, I. T., Chaturia, T. A.: Asymptotic Properties of Solutions of Nonatunomous Ordinary Differential Equations. Kluwer Acad. Publ., Dordrecht, 1993. MR 1220223
[12] Kusano, T., Naito, M.: Comparison theorems for functional differential equations with deviating arguments. J. Math. Soc. Japan 3 (1981), 509–533. DOI 10.2969/jmsj/03330509 | MR 0620288 | Zbl 0494.34049
[13] Ladde, G. S., Lakshmikantham, V., Zhang, B. G.: Oscillation Theory of Differential Equations with Deviating Arguments. Marcel Dekker, New York, 1987. MR 1017244 | Zbl 0832.34071
[14] Li, T., Thandapani, E.: Oscillation of solutions to odd–order nonlinear neutral functional differential equations. EJQTDE 2011 (2011), 1–12. MR 2781058 | Zbl 1211.34080
[15] Li, T., Zhang, Ch., Baculíková, B., Džurina, J.: On the oscillation of third order quasi–linear delay differential equations. Tatra Mt. Math. Publ. 48 (2011), 1–7. Zbl 1265.34235
[16] Mahfoud, W. E.: Oscillation and asymptotic behavior of solutions of $n$–th order nonlinear delay differential equations. J. Differential Equations 24 (1977), 75–98. DOI 10.1016/0022-0396(77)90171-1 | MR 0457902 | Zbl 0341.34065
[17] Philos, Ch. G.: On the existence of nonoscillatory solutions tending to zero at infinity for differential equations with positive delay. Arch. Math. (Brno) 36 (1981), 168–178. MR 0619435
[18] Philos, Ch. G.: Oscillation and asymptotic behavior of linear retarded differential equations of arbitrary order. Tech. Report 57, Univ. Ioannina, 1981.
[19] Philos, Ch. G.: Some comparison criteria in oscillation theory. J. Austral. Math. Soc. 36 (1984), 176–186. DOI 10.1017/S1446788700024630 | MR 0725744 | Zbl 0541.34046
[20] Shreve, W. E.: Oscillation in first order nonlinear retarded argument differential equations. Proc. Amer. Math. Soc. 41 (1973), 565–568. DOI 10.1090/S0002-9939-1973-0372371-X | MR 0372371 | Zbl 0254.34075
[21] Tang, S., Li, T., Thandapani, E.: Oscillation of higher–order half–linear neutral differential equations. Demonstratio Math. (to appear).
[22] Zhang, Ch., Li, T., Sun, B., Thandapani, E.: On the oscillation of higher–order half–linear delay differential equations. Appl. Math. Lett. 24 (2011), 1618–1621. DOI 10.1016/j.aml.2011.04.015 | MR 2803721 | Zbl 1223.34095
[23] Zhang, Q., Yan, J., Gao, L.: Oscillation behavior of even order nonlinear neutral differential equations with variable coefficients. Comput. Math. Appl. 59 (2010), 426–430. DOI 10.1016/j.camwa.2009.06.027 | MR 2575529 | Zbl 1189.34135
Partner of
EuDML logo