[4] Černý, M., Antoch, J., Hladík, M.:
On the Possibilistic Approach to Linear Regression Models Involving Uncertain, Indeterminate or Interval Data. Technical Report, Department of Econometrics, University of Economics, Prague 2011.
http://nb.vse.cz/ cernym/plr.pdf.
[7] Grötschel, M., Lovász, L., Schrijver, A.:
Geometric Algorithms and Combinatorial Optimization. Springer Verlag, Berlin 1993.
MR 1261419 |
Zbl 0837.05001
[8] Guibas, L. J., Nguyen, A., Zhang, L.:
Zonotopes as bounding volumes. In: Proc. Fourteenth Annual ACM-SIAM Symposium on Discrete Algorithms, SIAM, Pennsylvania 2003, pp. 803-812.
MR 1974996 |
Zbl 1092.68697
[9] John, F.:
Extremum problems with inequalities as subsidiary conditions. In: Fritz John, Collected Papers (J. Moser, ed.), Volume 2. Birkhäuser, Boston 1985, pp. 543-560.
MR 0030135 |
Zbl 0034.10503
[12] Yudin, D. B., Nemirovski, A. S.: Informational complexity and efficient methods for the solution of convex extremal problems. Matekon 13 (3) (1977), 25-45.
[13] Zaslavsky, T.:
Facing up to arrangements: face-count formulas for partitions of space by hyperplanes. Mem. Amer. Math. Soc. 154 (1975), 102 pp.
MR 0357135 |
Zbl 0296.50010