Previous |  Up |  Next

Article

Title: Projective metrizability in Finsler geometry (English)
Author: Saunders, David
Language: English
Journal: Communications in Mathematics
ISSN: 1804-1388
Volume: 20
Issue: 1
Year: 2012
Pages: 63-68
Summary lang: English
.
Category: math
.
Summary: The projective Finsler metrizability problem deals with the question whether a projective-equivalence class of sprays is the geodesic class of a (locally or globally defined) Finsler function. This paper describes an approach to the problem using an analogue of the multiplier approach to the inverse problem in Lagrangian mechanics. (English)
Keyword: Finsler function
Keyword: spray
Keyword: projective equivalence
Keyword: geodesic path
Keyword: projective metrizability
Keyword: Hilbert form
MSC: 53C60
idZBL: Zbl 06202719
idMR: MR3001632
.
Date available: 2012-11-27T16:31:13Z
Last updated: 2013-10-22
Stable URL: http://hdl.handle.net/10338.dmlcz/143081
.
Reference: [1] Bao, D., Chern, S.-S., Shen, Z.: An Introduction to Riemann-Finsler Geometry.2000, Springer Zbl 0954.53001, MR 1747675
Reference: [2] Crampin, M., Mestdag, T., Saunders, D.J.: The multiplier approach to the projective Finsler metrizability problem.Diff. Geom. Appl., 30, 6, 2012, 604-621 Zbl 1257.53105, MR 2996856, 10.1016/j.difgeo.2012.07.004
Reference: [3] Crampin, M., Mestdag, T., Saunders, D.J.: Hilbert forms for a Finsler metrizable projective class of sprays.Diff. Geom. Appl., to appear
Reference: [4] Krupková, O., Prince, G.E.: Second order ordinary differential equations in jet bundles and the inverse problem of the calculus of variations.Handbook of Global Analysis, 2008, 837-904, Elsevier Zbl 1236.58027, MR 2389647
Reference: [5] Shen, Z.: Differential Geometry of Spray and Finsler Spaces.2001, Kluwer Zbl 1009.53004, MR 1967666
Reference: [6] Whitehead, J.H.C.: Convex regions in the geometry of paths.Quart. J. Math., 3, 1932, 33-42 Zbl 0004.13102, 10.1093/qmath/os-3.1.33
Reference: [7] Whitehead, J.H.C.: Convex regions in the geometry of paths -- addendum.Quart. J. Math., 4, 1933, 226-227 Zbl 0007.36801, 10.1093/qmath/os-4.1.226
.

Files

Files Size Format View
ActaOstrav_20-2012-1_7.pdf 313.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo